Old White Meeting House 320 US-2 South Hero, Vermont 05486

VT DEC SMS #2024-5472 KAS #510210643

SITE INVESTIGATION REPORT

April 8, 2025

Prepared for:

Northwest Regional Planning Commission 75 Fairfield Street St Albans, VT 05478

589 Avenue D, Suite 10 PO Box 787 Williston, VT 05495

www.kas-consulting.com

802 383.0486 p 802 383.0490 f

Table of Contents

Certif	fication	.i
Execu	ıtive Summary	ii
1.0	Introduction	iv
2.0	Background	. 1
3.0	Scope of Work / Work Plan Deviations / Objectives / SOPs / Digsafe	. 2
3.2 3.3 3.4	Scope of Work and Work Plan Deviations Objectives Property Zoning and Applicable Standards Standard Operating Procedures (SOPs) Digsafe Notification / Utility Clearance	3
4.0	Environmental Assessment – Soils	3
4.1	Exterior Property Grounds – Shallow Soil Boring Advancement and Soil Sampling	. 3
5.0	Data Validation	5
5.0	Conceptual Site Model	. 5
6.2 6.3 6.4 6.5	Site Conditions and Property History	6
7.0	Data Gap Analysis	8
3.0	Conclusions	8
9.0	Recommendations	9

Appendices

Appendix A Site Location Map

Site Vicinity Map

Site Map

Soil: Total Lead Concentration Map (0-3") Soil: Total Lead Concentration Map (12-18")

i

Soil: PAHs as TEQ Benzo(a)pyrene Concentration Map (0-3") Soil: PAHs as TEQ Benzo(a)pyrene Concentration Map (12-18")

Appendix B Photographic Documentation

Appendix C Soil Data Summary

Appendix D Laboratory Analytical Report

Appendix E Data Validation Report

Certification

This report, which summarizes the Site Investigation completed at the Old White Meeting House property located at 320 US-2 in South Hero, Vermont, has been prepared under my direction in accordance with KAS' approved Work Plan & Site-Specific Quality Assurance Project Plan Addendum revised on February 5, 2025 and current Vermont Department of Environmental Conservation (VT DEC) requirements as presented in the *Investigation and Remediation of Contaminated Properties Rule* (I-Rule) document dated February 23, 2024.

I certify under penalty of perjury that I am an environmental professional, that all content contained within this deliverable is to the best of my knowledge true and accurate.

Jeremy Roberts, P.G.

Vice-President / Environmental Program Manager

Executive Summary

This report presents the results of a Site Investigation conducted at the Old White Meeting House property located at 320 US-2 in South Hero, Vermont ("Site" or "property"; see Site Location Map, Appendix A). This work was performed by KAS, Inc. (KAS) for the Northwest Regional Planning Commission (NPRC) on behalf of the property owner (Town of South Hero) and was funded by NRPC through EPA Brownfields Assessment Cooperative Agreement #BF00A01264.

The property consists of approximately 0.51 acres of land that is currently developed with one building. The property building was constructed in the early 1800's for use as a church and town hall. As time went on, the lower portion of the building was reportedly used by the Town of South Hero as a town garage. The Site Investigation was proposed to further define the lead impacts to shallow soil identified during the completion of a Phase II Environmental Site Assessment (ESA) in May 2024, to evaluate whether a risk is posed to the potential reuse of the property and if so, to evaluate what corrective action(s) may be employed to minimize risk to the environment and human health. The Site Investigation work scope included an assessment of shallow soils around the property building to target areas of future proposed soil disturbance.

Environmental Conditions Assessment – Shallow Soils

On February 27, 2025, KAS advanced eight (8) shallow soil borings (SB25-01 through SB25-08) outside the property building to further evaluate lead impacts to soil. One discrete sample was collected at each shallow boring location from the 0 – 3" and 12 – 18" below grade (bg) interval for analysis of total lead via EPA Method 6020B. In addition, the samples were submitted for analysis of total arsenic via EPA Method 6020B and polycyclic aromatic hydrocarbons (PAHs) via EPA Method 8270E. On February 27, 2025, KAS also collected three (3) additional soil samples from the 0-3" bg interval along the southern, eastern and western sides of the Site building to match the sample depth and location previously obtained from sample locations SB24-01, SB24-03 and SB24-04 (see Site Map, Appendix A). These samples were analyzed using the Synthetic Precipitation Leaching Procedure (SPLP) for arsenic and lead to determine the potential for metals to leach into groundwater beneath the Site.

Arsenic and lead were reported at a concentration above the laboratory method detection limits in all the soil samples obtained on February 27, 2025. The arsenic concentrations were reported below the applicable urban background standard at all locations. Total lead was reported in five (5) of the eight (8) shallow samples collected from 0-3" bg and six (6) of the eight (8) samples collected from 12-18" bg at concentrations above the urban background standard of 111 mg/kg. The reported lead concentrations ranged from 11 – 1,000 mg/kg.

The SPLP analysis indicated a concentration of lead was present in the three (3) soil samples obtained immediately outside the building foundation above Vermont Groundwater Enforcement Standard (VGES). The SPLP concentrations of lead ranged from 0.43 - 0.98 mg/L (VGES = 0.015 mg/L). The SPLP analysis for arsenic reported non-detectable concentrations.

PAHs were detected in all eight (8) of the samples collected from 0-3" bg and in four (4) of the eight (8) samples obtained from 12-18" bg on February 27, 2025, with PAHs expressed as the toxic equivalent quotient (TEQ) for Benzo(a)pyrene (BaP) reported below the urban background concentration in all samples.

Conclusions / Recommendations

Based on the soil data obtained to date, data gaps exist at the Site which include 1) the full extent of lead impacts to shallow soils has not been defined across the property, and 2) groundwater impacts cannot be ruled out using the existing data. The Site does not appear to meet the criteria for exemption from an Evaluation of Corrective Action Alternatives (ECAA) or corrective action to the lead impacted soil at the Site not meeting the designation criteria to be considered "development soil" (i.e. soil needs to be deemed non-hazardous to meet this designation).

Based on the results of the Site Investigation conducted at the Site, KAS recommends the following:

- An ECAA be prepared for the Site ahead of the preparation of a CAP. As part of the ECAA, additional soil samples should be collected at the Site to determine if lead impacts > VSS extend to the property boundaries. During this work, additional samples should also be collected from areas that will be disturbed for waste characterization purposes and additional Toxicity Characteristic Leaching Procedure (TCLP) analysis to further assess how much of the lead impacted soil is considered hazardous for lead content; and,
- 2. Due to the elevated levels of SPLP lead at select locations, groundwater monitoring wells should be installed immediately outside the building foundation to assess potential risk to groundwater. This data will be used in the ECAA and to assess the need for groundwater management / cleanup at the Site.

1.0 Introduction

This report presents the results of a Site Investigation conducted at the Old White Meeting House property located at 320 US-2 in South Hero, Vermont ("Site" or "property"; see Site Location Map, Appendix A). This work was performed by KAS, Inc. (KAS) for the Northwest Regional Planning Commission (NRPC) of St. Albans, Vermont on behalf of the property owner (Town of South Hero). This work was funded by NRPC through EPA Brownfields Assessment Cooperative Agreement #BF00A01264. A Site Vicinity Map and Site Map are included in Appendix A.

This document was prepared according to current Vermont Department of Environmental Conservation (VT DEC) requirements as presented in the *Investigation and Remediation of Contaminated Properties Rule* (I-Rule) document dated February 23, 2024. All work was done following the work plan Site-Specific Quality Assurance Project Plan (SSQAPP) dated January 24, 2025, revised February 5, 2025.

The owner and responsible party contact information is outlined below.

Owner / Responsible Party	Mailing Address	Contact Name	Phone	Email Address
Town of South Hero	P.O. Box 175 So Hero, VT 05468	Ms. Sue Arguin	(802) 372-5552	townadmin@southherovt.org

2.0 Background

KAS completed a Phase I Environmental Site Assessment (ESA) at the property in November 2021 in compliance with ASTM Standard E1527-21. The assessment revealed the following recognized environmental conditions (RECs) in connection with the property:

REC 1: The historical use of the property for vehicle servicing activities; and,

<u>REC 2</u>: The potential presence of elevated lead in shallow soils due to the likely historical presence of lead-based paint on the exterior of the property building.

KAS recommended the completion of a Phase II ESA to ascertain the presence or absence of contamination as a result of the RECs identified and to assess potential liability and business environmental risk associated with owning and redeveloping the property.

In May 2024, KAS completed a Phase II ESA which included an assessment of shallow soils immediately around the property building and the collection of sub-slab soil and soil gas data beneath the property building. One discrete sample was collected at each shallow boring location from the 0 – 3" below grade (bg) zone for analysis of total lead. In addition, KAS also advanced two borings through the concrete slab inside the former garage bays. One grab soil sample was collected at each location from soils directly below the building slab for laboratory analysis of volatile organic compounds (VOCs) via EPA Method 8260C. Following the collection of the sub-slab soil samples, these two locations were each finished with a sub-slab soil gas monitoring point. No elevated photoionization detector (PID) readings were encountered in any of the soil samples obtained from the borings advanced across the Site. The measured PID readings ranged from 0.1 – 0.7 parts per million by volume (ppmv). No odors were observed in the borings. Subsurface soils encountered during the advancement of soil borings consisted primarily of silty sand with some locations containing gravel fill. No VOCs were reported above laboratory method detection limits in the samples collected from beneath the slab of the building.

Total lead was reported in three (3) of the four (4) shallow samples collected outside the property building at concentrations above the applicable Vermont Soil Standard (VSS; urban background standard of 111 mg/kg). The reported lead concentrations ranged from 25 – 2,500 mg/kg. Due to the elevated lead concentrations reported, KAS instructed the laboratory to run Toxicity Characteristic Leaching Procedure (TCLP) analysis for three (3) of the samples to evaluate whether the soil would be considered hazardous by lead content. The TCLP-lead results ranged from 0.7 – 12 mg/L, with one of the locations (SB24-03) exceeding the threshold of 5.0 mg/L for hazardous waste.

On May 29, 2024, KAS installed two (2) sub-slab soil gas monitoring points (SVP-1 and SVP-2). A discrete soil gas sample was collected from both soil gas monitoring points on June 5, 2024. No VOCs were reported at a concentration above the resident sub-slab vapor intrusion standard (VIS).

Based on the Phase II ESA data, KAS recommended additional soil samples be collected near the locations where lead exceeded VSS to further define the vertical and horizontal extent of impacts. During this work, KAS also recommended shallow soil samples be collected from areas of planned future disturbance to assess the potential for polycyclic aromatic hydrocarbon (PAH), lead and arsenic impacts with select samples submitted for Synthetic Precipitation Leaching Procedure (SPLP) and Toxicity Characteristic Leaching Procedure (TCLP) analysis.

Due to the Phase II ESA findings, the report was shared with the VT DEC to satisfy statutory reporting obligations. On October 17, 2024, the VT DEC listed the property as an active hazardous waste site under SMS #2024-5472 and requested a Site Investigation be completed in accordance with the I-Rule.

3.0 Scope of Work / Work Plan Deviations / Objectives / SOPs / Digsafe

3.1 Scope of Work and Work Plan Deviations

The Site Investigation work scope was designed to further evaluate the contaminants of concern identified during the Phase I ESA and/or Phase II ESA and was intended to provide environmental data concerning the sampled media to assist in evaluating the Site for future use and redevelopment. The following tasks were completed as part of the Site Investigation:

- Work Plan & SSQAPP Addendum to KAS' approved Generic QAPP (RFA #23132), and submittal, notifications, approvals, project coordination, and health and safety plan (HASP) preparation;
- 2. Collection of shallow soil samples at the property for laboratory analysis to evaluate the potential presence of arsenic, lead and polycyclic aromatic hydrocarbons (PAHs);
- 3. Assessment of the potential for impacts to sensitive receptors and a qualitative evaluation of risks posed by the discovered subsurface impacts;
- 4. Refinement of the conceptual site model; and,
- 5. Preparation of a summary report (this document).

All components of the Site Investigation scope of work were accomplished and no deviations from the approved work scope occurred except for the following:

1. The laboratory did not analyze any soil samples for toxicity characteristic using the TCLP, as instructed on the chain of custody; and,

2. Due to a field error, only one duplicate sample was collected for PAHs, lead and arsenic analysis as opposed to the two duplicates called out in the SSQAPP.

These deviations are not believed to have an impact on the overall findings and data quality obtained from the Site Investigation.

3.2 Objectives

The primary goal of the Site Investigation was to further define lead impacts in shallow soils beneath the Site to evaluate whether a risk is posed to the potential reuse of the property. Additional goals of the Site Investigation were to assess the potential for urban fill contaminants to be present in soil beneath the Site and to assess potential risk to groundwater. This information was used to evaluate whether a risk is posed to nearby sensitive receptors and/or adjacent properties and if so, what corrective action(s) may be employed to minimize risk to the environment and human health.

3.3 Property Zoning and Applicable Standards

The Site lies in a designated urban background area according to the VT DEC and therefore the VT urban background soil standard for arsenic, lead and PAHs applies to the data obtained from the Site property.

3.4 Standard Operating Procedures (SOPs)

The following standard operating procedures (SOPs) were used during the Site Investigation activities. A copy of each SOP is available upon request.

KAS Protocol	Title
001	Soil Screening Headspace Measurement
004	Soil Boring Advancement
005	Shallow Soil Sampling
006	Sample Containerization, Preservation, Handling and Packaging
034	Use and Maintenance of MiniRae Photoionization Detector

3.5 Digsafe Notification / Utility Clearance

The property was pre-marked for Digsafe notification on February 24, 2025 (Digsafe Ticket # 20250900073). Each proposed boring location was determined to be clear of any known subsurface utilities.

4.0 Environmental Assessment – Soils

4.1 Exterior Property Grounds – Shallow Soil Boring Advancement and Soil Sampling

On February 27, 2024, KAS assessed shallow soils at eight (8) locations at the Site (SB25-01 through SB25-08) to further evaluate the extent of lead impacts in areas that will be disturbed during planned redevelopment (see Site Map, Appendix A). A Geoprobe 6011DT drill rig was used to collect soil samples from each boring for laboratory testing. The soil borings were advanced to a maximum depth of 18" bg. At each of the soil borings a discrete sample was collected for laboratory analysis of total lead from the 0-3" and 12-18" bg intervals for a total of sixteen (16) samples. The soil samples were logged for lithological characterization and field screened for the

presence of VOCs using a PID. The location of each boring was logged in the field using a handheld GPS.

At each boring location, KAS also collected a discrete laboratory analytical sample from the 0-3" and 12-18" bg intervals for laboratory analysis of arsenic and PAHs. No clear distinction between a fill and native layer was identified, therefore the sampling depth intervals were not altered.

While on-site on February 27, 2025, three (3) additional soil borings / soil samples were obtained from the 0-3" bg interval along the south, east and west sides of the building to match the sample depth and location previously obtained from SB24-01, SB24-03 and SB24-04 (see Site Map, Appendix A). These samples were analyzed using the SPLP for arsenic and lead to determine the potential for metals to leach into the groundwater. All samples were transported under chain of custody procedures to Eastern Analytical, Inc (Eurofins).

For quality assurance / quality control (QAQC) purposes, one duplicate sample per analytical parameter was collected. All excess soil boring cuttings were placed back in the boring upon completion of sampling.

Soil Screening Summary

No elevated PID readings were encountered in any of the soil samples except at sample SB24-03R. No odors or staining was observed in this sample and the source of the elevated PID reading is not clear. The measured PID readings ranged from 0.1 - 12.2 ppmv. Soil encountered during the advancement of soil borings consisted primarily of silty sand with some gravel fill observed. Some red brick fragments were noted between 14 - 24" bg at soil boring SB25-06.

Soil Sampling Results

Arsenic and lead were reported at a concentration above the laboratory reporting limit in all the soil samples obtained on February 27, 2025. The arsenic concentrations were reported below the applicable urban background standard at all locations. Total lead was reported in five (5) of the eight (8) shallow samples collected from 0-3" bg and six (6) of the eight (8) samples collected from 12-18" bg at concentrations above the urban background standard of 111 mg/kg. The reported lead concentrations ranged from 11 – 1,000 mg/kg.

The SPLP analysis indicated a concentration of lead was present in the three (3) soil samples obtained immediately outside the building foundation above Vermont Groundwater Enforcement Standard (VGES). The SPLP concentrations of lead ranged from 0.43 - 0.98 mg/L (VGES = 0.015 mg/L). The SPLP analysis for arsenic reported non-detectable concentrations.

PAHs were detected in all eight (8) of the shallower samples collected from 0-3" bg and in four (4) of the eight (8) samples obtained from 12-18" bg on February 27, 2025, with PAHs expressed as the toxic equivalent quotient (TEQ) for Benzo(a)pyrene (BaP) reported below the urban background concentration in all samples.

Soil Concentration Maps for PAHs and lead are included in Appendix A.

QA/QC Results

One duplicate sample was collected for PAH, lead, and arsenic analysis. The relative percent difference (RPD), which is defined as one hundred times the difference between the parent sample

and the duplicate sample divided by the mean of the two samples ranged from -5.1% to 28.6% for PAHs and metals, which suggests adequate QA/QC measures were maintained.

A tabulated summary of the soil sampling results is included in Appendix C and the laboratory report is provided in Appendix D.

5.0 Data Validation

Upon receipt of the laboratory analytical data collected during this Site Investigation, KAS' quality assurance officer (QAO) performed data validation as described in the SSQAPP Addendum. The validation evaluated the usability of the data generated throughout the investigation. The Data Validation Report is included in Appendix E.

All work was completed in accordance with the approved SSQAPP Addendum unless otherwise stated in Section 3.1 and the Data Validation Report included in Appendix E.

QAPP Modifications

Representative samples were collected appropriately. The scope of work and sampling procedures detailed in the SSQAPP Addendum was not modified based on field conditions unless otherwise stated in Section 3.1 and the Data Validation Report included in Appendix E.

Verification of Sampling Procedures & Chain of Custody

As indicated in the Data Validation Report, KAS' QAO determined that the sampling appears to have been performed appropriately and is representative of the field conditions encountered. Data should be accepted based on field sampling procedures documented.

Lab QA/QC Findings

It was documented that representative samples were collected appropriately. The data collected for this investigation was accepted by the QAO.

6.0 Conceptual Site Model

6.1 Site Conditions and Property History

The property is located off the northern side of US Route 2 in South Hero, Vermont. The property lies between Wally's Point Road and Hill Road within the northern portion of the Town of South Hero. The property consists of approximately 0.51 acres and is located within a residential zoning district according to the Town of South Hero. The property coordinates are – 73.304884° west longitude and 44.645901° north latitude. The property is generally flat throughout and is accessed via paved entrances off US Route 2. No bedrock outcroppings or surface water have been noted on the property or in the vicinity. The general area predominantly consists of a mix of residential and commercial development.

¹ Town of South Hero

² Envirosite

One building is present on the property consisting of an approximately 2,000-SF two-story wood frame structure. The building is dated 1816 according to the signage near its front door. Two overhead garage doors with garage bays are present along the lower portion of the building. The lower portion of the building is vacant except for some storage of various thrift shop items. The upper floors are used to store and display thrift shop items as part of the Granny's Attic. A Site Map which shows relevant Site features is included in Appendix C.

The property building was constructed in the early 1800's for use as a church and town hall. As time went on, the lower portion of the building was reportedly used by the Town of South Hero as a town garage which reportedly included some degree of vehicle servicing. No other historical uses of the property are known.

Based on a review of topographic maps and aerial photography, the Site lies at an approximate elevation of 150 feet above mean sea level (AMSL). Lake Champlain is located approximately 0.5 miles to the north of the property. Based on Site topography, the surface drainage from the Site is anticipated to flow in a general northerly direction. The property area is served by municipal sewer and water, natural gas, electricity, and telecommunications. No other subsurface infrastructure is known to be present beneath or near the Site.

As of the date of this report, neighboring property uses consist of the following:

North: Former So Hero Fire Department followed by open agricultural land

South: US Route 2 followed by residential properties

West: Farmers Market and restaurant East: Blue Paddle Bistro (restaurant)

6.2 Geology

According to the Surficial Geology Map of Vermont³, the overburden deposits near the property primarily consist of till. According to the Bedrock Geology Map of Vermont⁴, the property is underlain by dark-gray calcareous shale with beds of bluish-gray limestone.

No bedrock outcrop points are present on the property and no wetland areas have been identified on or near the property according to Vermont Department of Environmental Conservation (VT DEC) records.

6.3 Hydrogeology

The depth to groundwater beneath the property is unknown but is estimated to be less than 10.0 feet below grade and flow in a general northerly direction based on Site topography and the location to nearby surface waters.

6.4 Apparent Source(s) of Release

Prior to completion of the Phase II ESA, no releases of hazardous materials at the property were reported. The Phase I ESA completed by KAS in November 2021 identified the presence of lead-based paint on the outside of the property building and the potential past use of the property building for vehicle maintenance. No other potential sources on site are known to exist or have been identified at this time.

³ Surficial Geologic Map of Vermont, 1970

⁴ Bedrock Geologic Map of Vermont, 2011

Lead impacts to shallow soils around the property building are believed to be related to the historical presence of lead-based paint on the exterior of the building as the building was constructed pre-1978.

The past use of the building as a garage does not appear to have resulted in evidence of a release of regulated VOCs and since the completion of the Phase I ESA, the Town of South Hero has clarified that the property building was not used for any vehicle repair work in the past.

6.5 Contaminant Fate and Transport

Lead impacts > VSS have been identified in shallow soils at several locations around the property building. Transport of lead to these soils likely occurred through the chipping and flaking of exterior paint containing lead onto the surrounding soil, or the leaching of lead into soil through rainwater coming in contact with the exterior paint and dripping onto the soil below. The lead impacts appear to extend at least 10 - 20 feet away from the building foundation and may be widespread across the property; however, the full extent of these impacts is not clear based on the testing completed to date.

The lead concentrations in soil have been shown to increase with depth at several locations. The higher levels of lead at the 12 - 18" bg interval versus the 0 - 3" bg interval may be due to the surface grade around the Site building changing over time. It is possible topsoil / soil was brought in to raise the elevation around the building at one time which would mean the 12 - 18" bg interval was previously representative of the surface grade. However, it is also possible lead has leached downward overtime via rainwater resulting in higher concentrations at slightly deeper soil depths.

Generally, lead and other metals exhibit low mobility (do not easily dissolve in water) and will persist in the environment once adsorbed onto soils. Heavy metals are slow to degrade under natural conditions. Shallow soil samples collected at three locations immediately outside the Site building foundation have indicated that the potential exists for lead to leach into the groundwater at concentrations exceeding VGES. Given this information and that the reported lead concentrations in soil beneath the Site have been shown to increase with depth at several locations, the risk for groundwater impacts cannot be ruled out at this time.

6.6 Exposure Pathways and Sensitive Receptor Risk Assessment

A review of potential exposure pathways and a sensitive receptor risk assessment of the area surrounding the property is provided below, and a determination of the potential risk to identified exposure pathways and receptors has been made based on proximity to the impacted areas, the presumed groundwater flow direction, contaminant mobility and volatility, and contaminant concentration levels in soil.

Exposure Pathway / Sensitive	Pathway Complete or Incomplete	Supporting Documentation
Receptor		
Direct human contact to soil or groundwater	Deemed Complete	Impacted soils have been identified to be present at surface depths and some of these soils are not capped with hardscape cover.
Soil to groundwater (drinking water)	Unknown	The SPLP lead data collected at select shallow soil locations indicates there is potential risk of lead leaching into groundwater at concentrations above VGES. There are no supply wells within one ½ mile of the Site.

Exposure Pathway / Sensitive Receptor	Pathway Complete or Incomplete	Supporting Documentation
Inhalation of soil vapor	Deemed Incomplete	Soil gas testing beneath the Site does not support the likely presence of a complete vapor intrusion pathway.
Soil to surface water	Deemed Incomplete	Impacts to nearby surface water are not likely based on existing data.
Groundwater to surface water	Deemed Incomplete	Impacts to nearby surface water are not likely based on existing data.
Groundwater or vapor migration to utility corridors	Deemed Incomplete	Groundwater or vapor migration via the nearest utility line corridors is not believed to be a concern based on available data.

Routes of potential exposure to current and future site users include absorption via dermal contact and/or ingestion of soil. Impacted soils > VSS have been identified at shallow depths at various locations at the Site property. Some of these locations do not currently have hardscape cover and/or restricted access and shallow soil in these areas could present a direct contact risk. Potential exposure to groundwater is not deemed to be of concern given the presumed depth to groundwater and the lack of groundwater use for the Site property.

7.0 Data Gap Analysis

Taking into consideration the conceptual site model presented in Section 6.0, KAS has completed an evaluation of potential data gaps at the Site. A complete picture of the property history and use has been obtained through prior completion of a Phase I ESA.

The current data set has not fully defined the extent of lead impacts to shallow soils across the property and it is presumed impacts > VSS extend further away from the Site building than the soil boring locations completed to date. However, the data set is deemed sufficient to adequately assess potential arsenic and PAH impacts to soil at the Site.

Shallow soil samples collected at three (3) locations immediately outside the Site building foundation have indicated that the potential exists for lead to leach into the groundwater at concentrations exceeding VGES. The reported lead concentrations in soil beneath the Site have been shown to increase with depth at several locations. Therefore, the existing data set is deemed inadequate to rule out potential risk to groundwater.

The Site does not appear to meet the criteria for exemption from an Evaluation of Corrective Action Alternatives (ECAA) or corrective action due to the lead impacted soil at the Site not meeting the criteria to be considered "development soil" (i.e. soil needs to be deemed non-hazardous to meet this designation). The TCLP-lead results previously obtained in shallow soil around the Site building ranged from 0.7 – 12 mg/L, with one of the locations (SB24-03) exceeding the threshold of 5.0 mg/L for hazardous waste. Therefore, at least some of the lead impacted soil at the Site is deemed to be hazardous and does not meet the designation to be considered "development soil".

8.0 Conclusions

KAS has completed a Site Investigation in accordance with the approved Work Plan / SSQAPP revised February 5, 2025 and following the requirements set forth in the VT DEC I-Rule. Based on the results of the investigative work conducted, KAS presents the following conclusions:

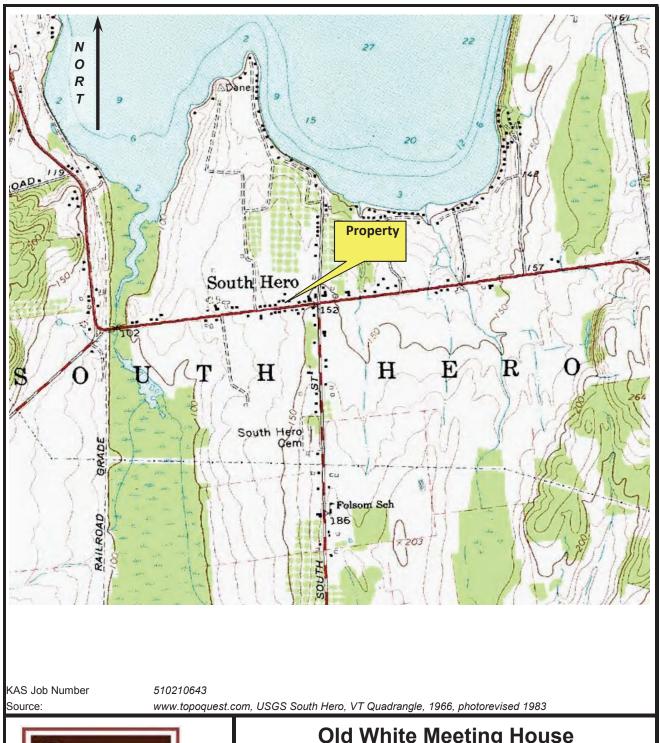
- 1. On February 27, 2025, KAS advanced eight (8) shallow soil borings (SB25-01 through SB25-08) outside the property building to further evaluate lead impacts to soil. One discrete sample was collected at each shallow boring location from the 0 3" and 12 18" bg intervals for analysis of total lead via EPA Method 6020B. In addition, the samples were submitted for analysis of total arsenic via EPA Method 6020B and PAHs via EPA Method 8270E;
- 2. On February 27, 2025, KAS also collected three (3) additional soil samples from the 0-3" bg interval along the southern, eastern and western sides of the Site building to match the sample depth and location previously obtained at samples SB24-01, SB24-03 and SB24-04 (see Site Map, Appendix A). These samples were analyzed using the SPLP for arsenic and lead to determine the potential for metals to leach into the groundwater;
- 3. Arsenic and lead were reported at a concentration above the laboratory reporting limit in all the soil samples obtained on February 27, 2025. The arsenic concentrations were reported below the applicable urban background standard at all locations. Total lead was reported in five (5) of the eight (8) shallow samples collected from 0-3" bg and six (6) of the eight (8) samples collected from 12-18" bg at concentrations above the urban background standard of 111 mg/kg. The reported lead concentrations ranged from 11 1,000 mg/kg;
- 4. The SPLP analysis indicated a concentration of lead was present in the three (3) soil samples obtained immediately outside the building foundation above VGES. The SPLP concentrations of lead ranged from 0.43 0.98 mg/L (VGES = 0.015 mg/L). The SPLP analysis for arsenic reported non-detectable concentrations;
- 5. PAHs were detected in all eight (8) of the shallower samples collected from 0-3" bg and in four (4) of the eight (8) samples obtained from 12-18" bg on February 27, 2025, with PAHs expressed as the TEQ for BaP reported below the urban background concentration in all samples;
- 6. The objectives of the Site Investigation have been met; however, based on the soil data obtained to date, data gaps exist which include 1) the full extent of lead impacts to shallow soils has not been defined across the property, and 2) groundwater impacts cannot be ruled out using the existing data; and,
- 7. The Site does not appear to meet the criteria for exemption from an ECAA or corrective action due to the lead impacted soil at the Site not meeting the designation criteria to be considered "development soil" (i.e. soil needs to be deemed non-hazardous to meet this designation).

9.0 Recommendations

Based on the results of the Site Investigation conducted at the Site, KAS recommends the following:

 An ECAA be prepared for the Site ahead of the preparation of a Corrective Action Plan (CAP). As part of the ECAA, additional soil samples should be collected at the Site to determine if lead impacts > VSS extend to the property boundaries. During this work, additional samples should also be collected from areas that will be disturbed for waste characterization purposes and additional TCLP analysis to further assess how much of the lead impacted soil is considered hazardous for lead content; and,

2. Due to the elevated levels of SPLP lead at select locations, groundwater monitoring wells should be installed immediately outside the building foundation to assess potential risk to groundwater. This data will be used in the ECAA and to assess the need for groundwater management / cleanup at the Site.


Appendix A

Site Location Map Site Vicinity Map Site Map

Soil: Total Lead Concentration Map (0-3")

Soil: Total Lead Concentration Map (12-18")

Soil: PAHs as TEQ Benzo(a)pyrene Concentration Map (0-3") Soil: PAHs as TEQ Benzo(a)pyrene Concentration Map (12-18")

Old White Meeting House 320 US-2, South Hero, VT


Site Location Map

Date: 11/05/21 Drawing No. 0 Scale: NTS By: JR

Old White Meeting House Site Vicinity Map Vermont Agency of Natural Resources **VERMONT**

vermont.gov

LEGEND

★ Wetland Projects

Wetland - VSWI

Class 1 Wetland Class 2 Wetland

Wetland Buffer

Wetlands Advisory Layer

Existing stormwater point

Catchbasin

Dry Well

Drop Inlet

Grate/Curb Inlet

Yard drain

Junction Box

Stormwater Manhole

Outfall

Pond outlet structure

Treatment feature (see notes)

<all other values>

Existing stormwater line

Storm line

Storm line (old Sanitary line)

Footing drain

Under drain

French drain

Trench drain

Existing stormwater area

Sanitary Points

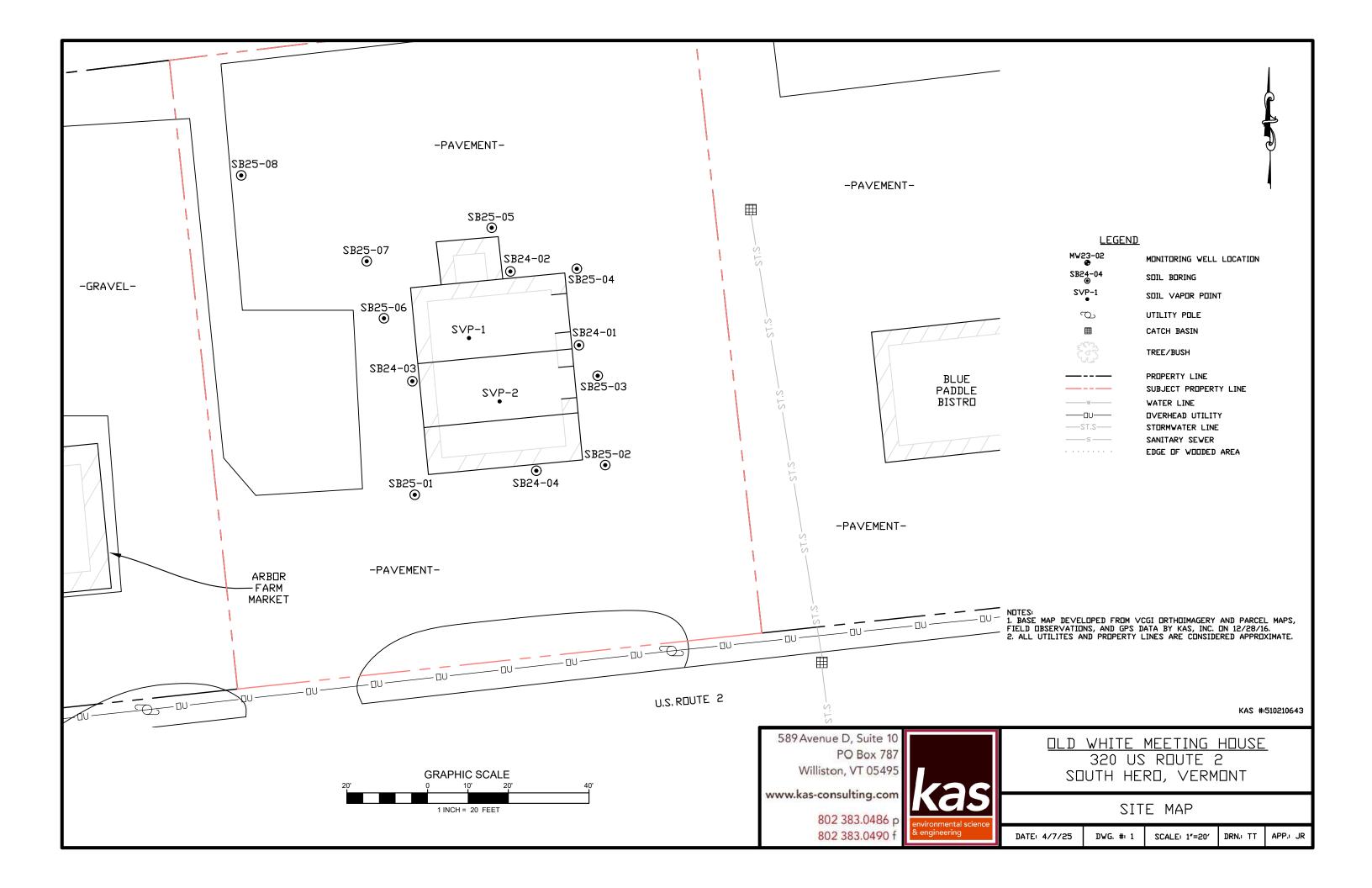
1: 5,000

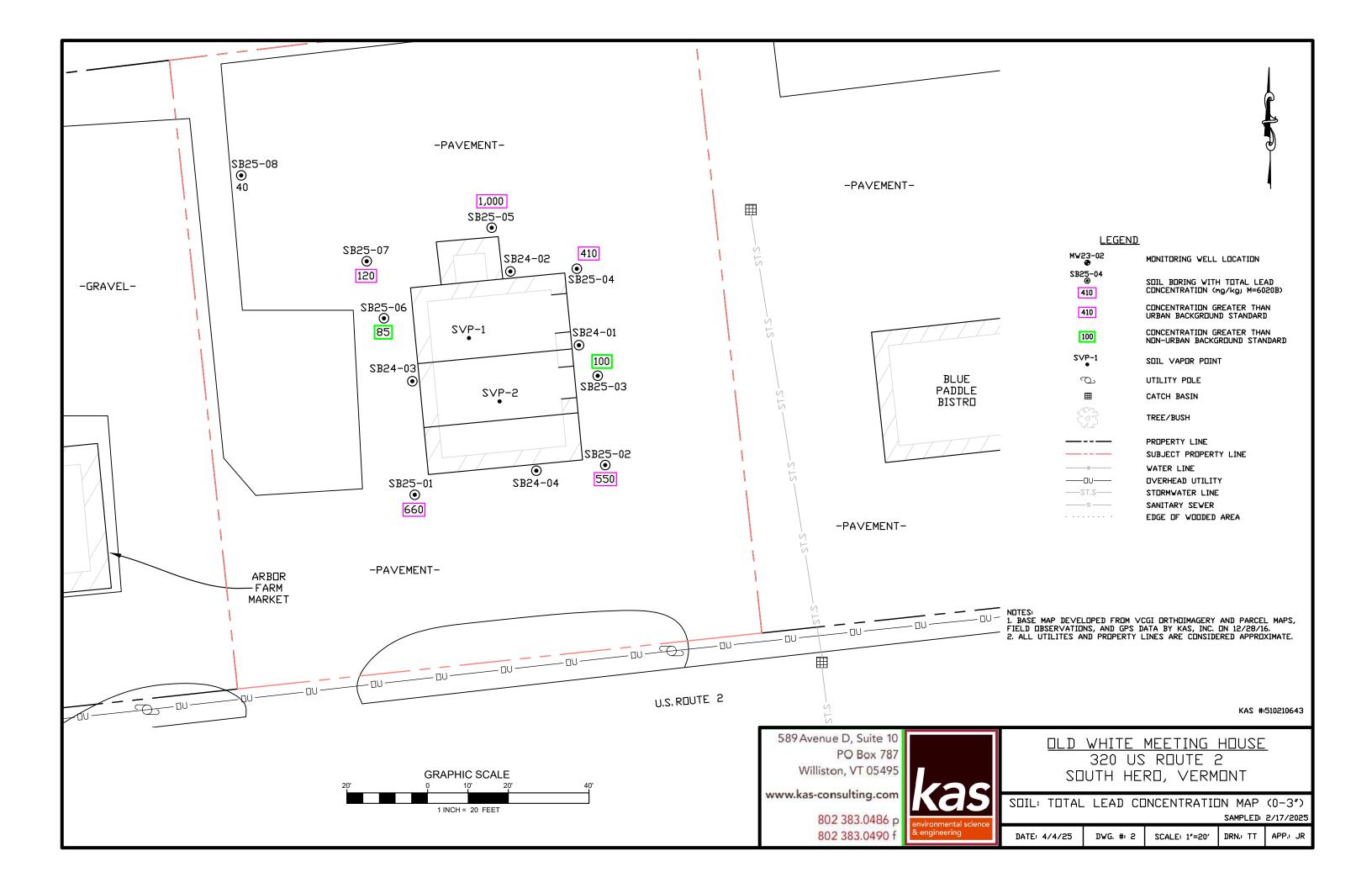
1in = 417 ft.

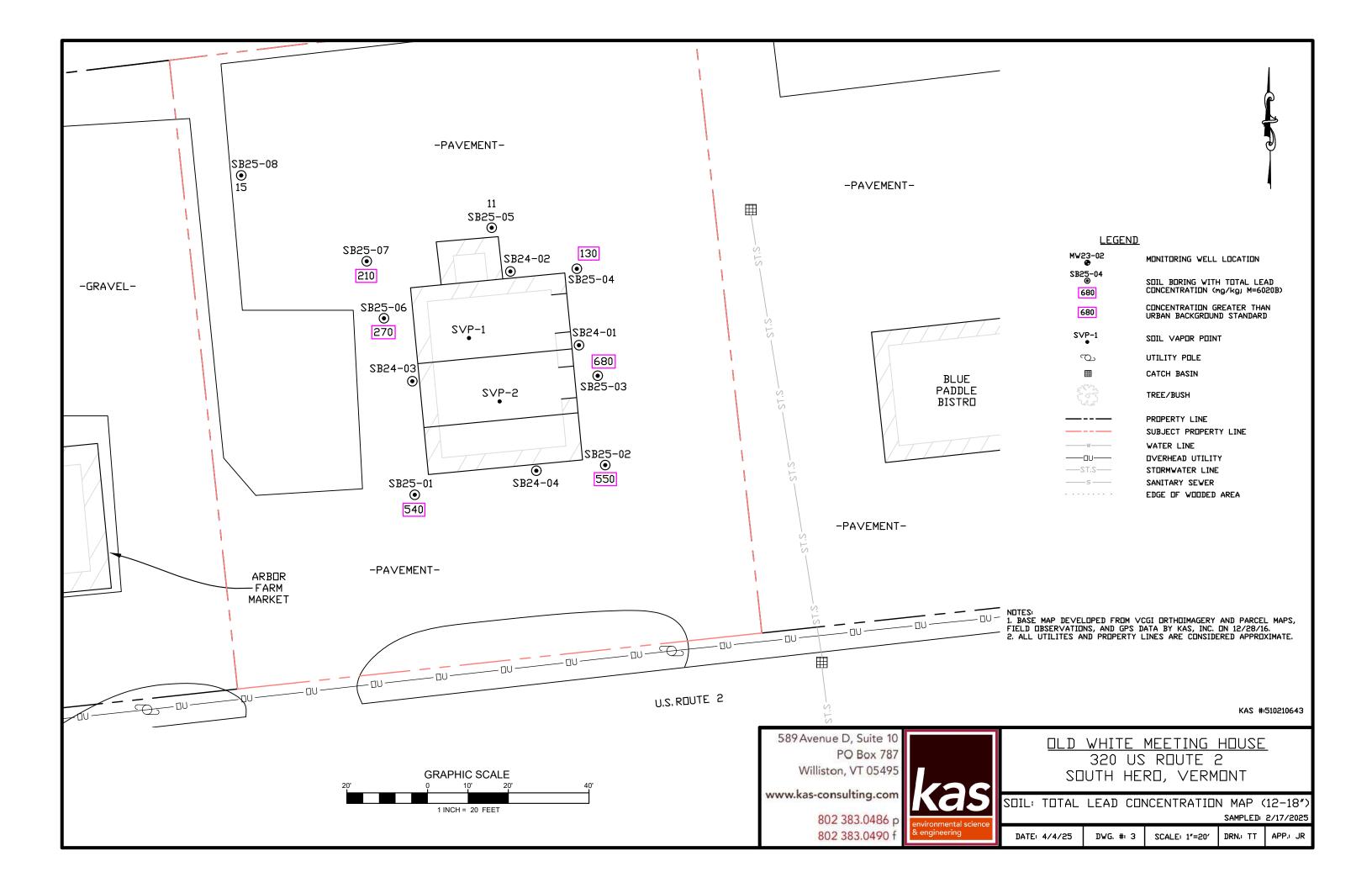
1cm = 50 meters

254.0 127.00

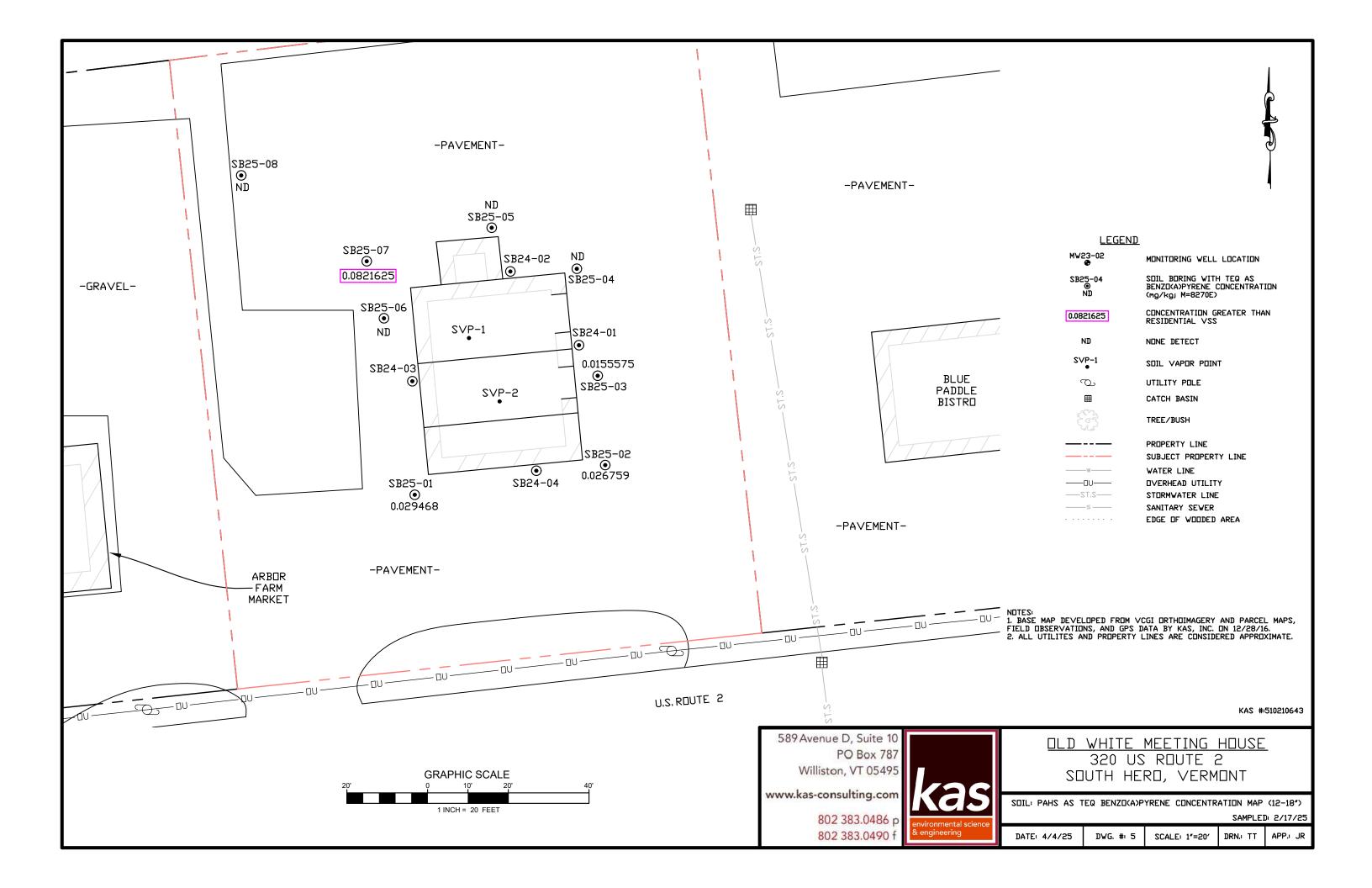
WGS_1984_Web_Mercator_Auxiliary_Sphere


© Vermont Agency of Natural Resources. April 3, 2024


254.0 Meters


DISCLAIMER: This map is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. ANR and the State of Vermont make no representations of any kind, including but not limited to, the warranties of merchantability, or fitness for a particular use, nor are any such warranties to be implied with respect to the data on this map. THIS MAP IS NOT TO BE USED FOR NAVIGATION NOTES

Map created using ANR's Natural Resources Atlas


KAS #510210643

Appendix B

Photographic Documentation

Photographic Documentation Site Investigation Old White Meeting House 320 US-2, South Hero, Vermont KAS #510210643

Photograph ID: 001

Date: February 27, 2025

Location: Site Property

Direction:

Facing northeast

Comments:

View of the western side of the Site building where soil borings SB25-01, SB25-06 and SB25-07 were advanced.

Photograph ID: 002

Date: February 27, 2025

Location: Site Property

Direction:

Facing northerly

Comments:

View of the eastern side of the Site building where soil borings SB25-02, SB25-03 and SB25-04 were advanced.

Photographic Documentation Site Investigation Old White Meeting House 320 US-2, South Hero, Vermont KAS #510210643

Photograph ID: 003

Date: February 27, 2025

Location: Site Property

Direction:

Facing southerly

Comments:

View of the northern side of the Site building where soil boring SB25-05 was advanced.

Photograph ID: 004

Date: February 27, 2025

Location: Site Property

Direction:

Facing westerly

Comments:

View of the northwestern portion of the Site where soil boring SB25-07 and SB25-08 were advanced.

Appendix C

Soil Data Summary

Summary of Shallow Soil Analytical Data - Metals Old White Meeting House 320 US-2

South Hero, Vermont 05486

SB25-01 (0-3")	SB25-01 (12-18")	SB25-02 (0-3")	SB25-02 (12-18")	SB25-03 (0-3")	SB25-03 (12-18")	SB25-04 (0-3")	SB25-04 (12-18")	Vermont Soil	Vermont
2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	Standards -	Urban
0.1	0.4	0.2	0.4	0.3	0.2	0.3	0.3	Non Urban	Background
4.1	4.2	2.8	3.8	2.2	3.7	4.1	3.3	-	16
660	540	550	830	100	680	410	130	41	111
	(0-3") 2/27/25 0.1	(0-3") (12-18") 2/27/25 2/27/25 0.1 0.4 4.1 4.2	(0-3") (12-18") (0-3") 2/27/25 2/27/25 2/27/25 0.1 0.4 0.2	(0-3") (12-18") (0-3") (12-18") 2/27/25 2/27/25 2/27/25 2/27/25 0.1 0.4 0.2 0.4 4.1 4.2 2.8 3.8	(0-3") (12-18") (0-3") (12-18") (0-3") 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 0.1 0.4 0.2 0.4 0.3 4.1 4.2 2.8 3.8 2.2	(0-3") (12-18") (0-3") (12-18") (0-3") (12-18") 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 0.1 0.4 0.2 0.4 0.3 0.2 4.1 4.2 2.8 3.8 2.2 3.7	(0-3") (12-18") (0-3") (12-18") (0-3") 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 0.3 0.2 0.3 4.1 4.2 2.8 3.8 2.2 3.7 4.1	(0-3") (12-18") (0-3") (12-18") (0-3") (12-18") 2/27/25 2/27	(0-3") (12-18") (0-3") (12-18") (0-3") (12-18") Vermont Soil 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 2/27/25 Standards - Non Urban 4.1 4.2 2.8 3.8 2.2 3.7 4.1 3.3 -

Sample ID (depth):	SB25-05 (0-3")	SB25-05 (12-18")	SB25-06 (0-3")	SB25-06 (12-18")	SB25-07 (0-3")	SB25-07 (12-18")	SB25-08 (0-3")	SB25-08 (12-18")	Vermont Soil	Vermont
Sample Date:	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	Standards -	Urban
PID Reading (ppmv):	0.3	0.5	0.4	0.6	0.3	0.6	0.5	0.4	Non Urban	Background
METALS (mg/kg)									1	
Arsenic	7.1	2.0	3.0	6.1	2.7	5.8	3.2	2.4	16	16
Lead	1000	11	85	270	120	210	40	15	-	111

Sample ID (depth):	SB24-01R (0-3")	SB24-03R (0-3")	SB24-04R (0-3")	Vermont	D
Sample Date:	2/27/25	2/27/25	2/27/25	Groundwater Enforcement	Preventative Action Level
PID Reading (ppmv):	0.2	0.2	0.1	Standard	(PAL)
SPLP METALS (mg/L)				(VGES)	, ,
Arsenic	<0.01	<0.01	<0.01	0.01	1.0
Lead	0.98	0.91	0.43	0.015	1.5

NOTES:

All values reported in mg/kg, dry, unless otherwise indicated.

Vermont Soil Standards from Investigation and Remediation of Contaminated Properties Rule (I-Rule, February 23, 2024)

<xx = Compound not detected above detection limit (xx)</pre>

Results reported above detection limits are indicated in bold.

- "-" indicates not analyzed or that a screening level is not provided in the I-Rule Table
- * Total Equivalent Quotient (TEQ) obtained from EAI laboratory report. TEQ values were summed to obtain TEQ as benzo(a)pyrene. One-half of ND values were used in TEQ calculations per I-Rule.

=reported concentration above applicable regulatory standard (urban background)

=reported concentration above VT non-urban standard but below applicable urban background standard

=reported concentration above VGES

Summary of Shallow Soil Analytical Data - PAHs Old White Meeting House 320 US-2 South Hero, Vermont 05486

Sample ID (depth):	SB25-01 (0-3")	SB25-01 (12-18")	SB25-02 (0-3")	SB25-02 (12-18")	SB25-03 (0-3")	SB25-03 (12-18")	SB25-04 (0-3")	SB25-04 (12-18")	Vermont Soil Standards -	Vermont Urban
Sample Date:	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	Resident	Background
PID Reading (ppmv):	0.1	0.4	0.2	0.4	0.3	0.2	0.3	0.3	rtoolaoni	
PAHs (mg/kg)										
1-Methylnaphthalene	<0.012	<0.0085	<0.012	<0.0085	<0.038	< 0.0083	<0.050	<0.0092	-	-
2-Methylnaphthalene	<0.012	< 0.0085	< 0.012	< 0.0085	<0.038	< 0.0083	< 0.050	< 0.0092	-	-
Acenaphthene	<0.012	< 0.0085	< 0.012	< 0.0085	<0.038	< 0.0083	< 0.050	< 0.0092	-	-
Acenaphthylene	<0.012	< 0.0085	< 0.012	< 0.0085	<0.038	< 0.0083	< 0.050	< 0.0092	-	-
Anthracene	<0.012	< 0.0085	< 0.012	< 0.0085	< 0.038	< 0.0083	0.071	< 0.0092	-	-
Benzo[a]anthracene	0.020	0.018	0.025	0.017	<0.038	0.0094	0.37	< 0.0092	-	-
Benzo[a]pyrene	0.020	0.019	0.022	0.017	0.051	0.0086	0.36	< 0.0092	0.07	-
Benzo[b]fluoranthene	0.029	0.028	0.031	0.024	0.054	0.014	0.56	< 0.0092	-	-
Benzo[g,h,i]perylene	0.018	0.016	0.021	0.014	0.043	< 0.0083	0.11	< 0.0092	-	-
Benzo[k]fluoranthene	<0.012	0.0097	0.015	0.0089	<0.038	< 0.0083	0.21	< 0.0092		-
Chrysene	0.020	0.021	0.026	0.020	0.076	0.011	0.440	< 0.0092	-	-
Dibenz[a,h]anthracene	<0.012	< 0.0085	<0.012	< 0.0085	< 0.038	< 0.0083	< 0.050	< 0.0092	-	-
Fluoranthene	0.031	0.031	0.051	0.035	< 0.038	0.010	1.0	< 0.0092	2,301	-
Fluorene	<0.012	< 0.0085	< 0.012	< 0.0085	< 0.038	< 0.0083	< 0.050	< 0.0092	2,301	-
Indeno[1,2,3-cd]pyrene	0.016	0.015	0.020	0.013	< 0.038	< 0.0083	0.14	< 0.0092	-	-
Naphthalene	<0.012	< 0.0085	< 0.012	< 0.0085	<0.038	< 0.0083	< 0.050	< 0.0092	2.7	-
Phenanthrene	< 0.012	0.0097	0.024	0.015	<0.038	< 0.0083	0.55	< 0.0092	-	-
Pyrene	0.027	0.028	0.040	0.029	<0.038	0.0094	0.67	< 0.0092	-	-
TEQ as Benzo(a)pyrene*	0.03258	0.029468	0.035776	0.026759	0.079466	0.0155575	0.49454	ND	0.07	0.58

Sample ID (depth):	SB25-05 (0-3")	SB25-05 (12-18")	SB25-06 (0-3")	SB25-06 (12-18")	SB25-07 (0-3")	SB25-07 (12-18")	SB25-08 (0-3")	SB25-08 (12-18")	Vermont Soil Standards -	Vermont Urban
Sample Date:	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	2/27/25	Resident	Background
PID Reading (ppmv):	0.3	0.5	0.4	0.6	0.3	0.6	0.5	0.4	rtoolaont	
PAHs (mg/kg)										
1-Methylnaphthalene	<0.038	< 0.0076	<0.046	< 0.043	< 0.041	< 0.045	<0.0091	< 0.037	-	-
2-Methylnaphthalene	< 0.038	< 0.0076	<0.046	< 0.043	< 0.041	< 0.045	<0.0091	< 0.037	-	-
Acenaphthene	< 0.038	< 0.0076	< 0.046	< 0.043	< 0.041	< 0.045	< 0.0091	< 0.037	-	-
Acenaphthylene	< 0.038	< 0.0076	< 0.046	< 0.043	< 0.041	< 0.045	< 0.0091	< 0.037	-	-
Anthracene	< 0.038	< 0.0076	< 0.046	< 0.043	< 0.041	< 0.045	< 0.0091	< 0.037	-	-
Benzo[a]anthracene	0.054	< 0.0076	<0.046	< 0.043	0.043	0.047	0.013	< 0.037	-	-
Benzo[a]pyrene	0.083	< 0.0076	0.088	< 0.043	0.047	0.047	0.014	< 0.037	0.07	-
Benzo[b]fluoranthene	0.12	< 0.0076	0.11	< 0.043	0.067	0.073	0.027	< 0.037	-	-
Benzo[g,h,i]perylene	0.065	< 0.0076	< 0.046	< 0.043	< 0.041	< 0.045	< 0.0091	< 0.037	-	
Benzo[k]fluoranthene	< 0.038	< 0.0076	< 0.046	< 0.043	< 0.041	< 0.045	< 0.0091	< 0.037		
Chrysene	0.11	< 0.0076	0.11	< 0.043	0.043	< 0.045	0.016	< 0.037	-	
Dibenz[a,h]anthracene	<0.038	< 0.0076	< 0.046	< 0.043	< 0.041	< 0.045	< 0.0091	< 0.037	-	-
Fluoranthene	0.094	< 0.0076	<0.046	< 0.043	0.059	0.082	0.025	< 0.037	2,301	-
Fluorene	<0.038	< 0.0076	<0.046	< 0.043	< 0.041	< 0.045	<0.0091	< 0.037	2,301	-
Indeno[1,2,3-cd]pyrene	< 0.038	< 0.0076	<0.046	< 0.043	< 0.041	< 0.045	< 0.0091	< 0.037	-	-
Naphthalene	< 0.038	< 0.0076	<0.046	< 0.043	< 0.041	< 0.045	< 0.0091	< 0.037	2.7	-
Phenanthrene	< 0.038	< 0.0076	< 0.046	< 0.043	< 0.041	< 0.045	< 0.0091	< 0.037	-	-
Pyrene	0.097	< 0.0076	0.071	< 0.043	0.051	0.069	0.019	< 0.037	-	-
TEQ as Benzo(a)pyrene*	0.1216	ND	0.12694	ND	0.080648	0.0821625	0.0230665	ND	0.07	0.58

All values reported in mg/kg, dry, unless otherwise indicated.

Vermont Soil Standards from Investigation and Remediation of Contaminated Properties Rule (I-Rule, February 23, 2024)

<xx = Compound not detected above detection limit (xx)</p>
Results reported above detection limits are indicated in bold.

"-" indicates not analyzed or that a screening level is not provided in the I-Rule Table

=reported concentration above VT residential standard but below applicable urban background standard

^{*}Total Equivalent Quotient (TEQ) obtained from EAI laboratory report. TEQ values were summed to obtain TEQ as benzo(a) pyrene. One-half of ND values were used in TEQ calculations per I-Rule. =reported concentration above applicable regulatory standard (urban background)

Summary of Shallow Soil Analytical Data - QAQC Old White Meeting House 320 US-2

South Hero, Vermont 05486

Sample ID (depth in feet):	SB24-04R (0-3")	Dup-1	RPD (%)	SB25-01 (12-18")	Dup-2	RPD (%)
Sample Date:	02/27/25	02/27/25		02/27/25	02/27/25	
PAHs (mg/kg)						
1-Methylnaphthalene			N/A	< 0.0085	<0.0086	N/A
2-Methylnaphthalene			N/A	< 0.0085	<0.0086	N/A
Acenaphthene			N/A	<0.0085	<0.0086	N/A
Acenaphthylene			N/A	<0.0085	<0.0086	N/A
Anthracene			N/A	< 0.0085	<0.0086	N/A
Benzo[a]anthracene			N/A	0.018	0.020	-10.5
Benzo[a]pyrene			N/A	0.019	0.020	-5.1
Benzo[b]fluoranthene			N/A	0.028	0.035	-22.2
Benzo[g,h,i]perylene	PAHs not and	alvzod for this	N/A	0.016	0.012	28.6
Benzo[k]fluoranthene		sample	N/A	0.0097	<0.0086	N/A
Chrysene	dupilate	Sample	N/A	0.021	0.025	-17.4
Dibenz[a,h]anthracene			N/A	< 0.0085	<0.0086	N/A
Fluorene			N/A	< 0.0085	<0.0086	N/A
Flouranthene			N/A	0.031	0.038	-20.3
Indeno[1,2,3-cd]pyrene			N/A	0.015	<0.0086	N/A
Naphthalene			N/A	< 0.0085	<0.0086	N/A
Phenanthrene			N/A	0.0097	0.0120	-21.2
Pyrene			N/A	0.028	0.033	-16.4
TEQ as Benzo(a)pyrene*			N/A	0.029468	0.025525	14.3
METALS (mg/kg)						
Total Arsenic	NA	NA	N/A	4.2	3.7	12.7
Total Lead	NA	NA	N/A	540	470	13.9
SPLP METALS (mg/L)						
Total Arsenic	<0.01	<0.01	N/A	NA	NA	N/A
Total Lead	0.43	0.47	-8.9	NA	NA	N/A

NOTES:

All values reported in mg/kg, dry, unless otherwise indicated.

<xx = Compound not detected above detection limit (xx)</pre>

Results reported above detection limits are indicated in bold

Toxicity Equivalent Factors (TEFs) used by laboratory are consistent with those provided in I-Rule (February 23, 2024).

RPD - Relative Percent Difference

^{*} Sum of Toxicity Equivalent Quotients (TEQs) provided in laboratory report.

Appendix D

Analytical Laboratory Report

6

PREPARED FOR

Attn: Mr. Jeremy Roberts KAS Inc 589 Avenue D Suite 10 Williston, Vermont 05495

Generated 3/27/2025 3:13:14 PM Revision 1

ANALYTICAL REPORT

JOB DESCRIPTION

Old White Meeting House | 510210643

JOB NUMBER

475-202-1

Eurofins Northeast Concord 51 Antrim Avenue Concord NH 03301

Eurofins Northeast Concord

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 3/27/2025 3:13:14 PM Revision 1

Authorized for release by Lorraine Olashaw, Lab Director Lorraine.Olashaw@et.eurofinsus.com Designee for Ashley Breen, Project Manager Ashley.Breen@et.eurofinsus.com (603)228-0525

Case Narrative

Client: KAS Inc Job ID: 475-202-1

Project: Old White Meeting House | 510210643

Eurofins Northeast Concord Job ID: 475-202-1

> Job Narrative 475-202-1

REVISION

The report being provided is a revision of the original report sent on 3/25/2025. The report (revision 1) is being revised due to Add TEQ limits to final report..

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/28/2025 2:00 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.6°C.

GC/MS Semi VOA

Method 8270E_LL: Due to the matrix, the following samples could not be concentrated to the final method required volume: SB25-03 (0-3) (475-202-5), SB25-04 (0-3) (475-202-7), SB25-05 (0-3) (475-202-9), SB25-06 (0-3) (475-202-11), SB25-06 (12-18) (475-202-12), SB25-07 (0-3) (475-202-13), SB25-07 (12-18) (475-202-14) and SB25-08 (12-18) (475-202-16). The reporting limits (RLs) are elevated proportionately.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Northeast Concord

Sample Summary

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
475-202-1	SB25-01 (0-3)	Solid	02/27/25 14:30	02/28/25 14:00
475-202-2	SB25-01 (12-18)	Solid	02/27/25 14:36	02/28/25 14:00
475-202-3	SB25-02 (0-3)	Solid	02/27/25 14:48	02/28/25 14:00
475-202-4	SB25-02 (12-18)	Solid	02/27/25 14:56	02/28/25 14:00
475-202-5	SB25-03 (0-3)	Solid	02/27/25 13:03	02/28/25 14:00
475-202-6	SB25-03 (12-18)	Solid	02/27/25 13:06	02/28/25 14:00
475-202-7	SB25-04 (0-3)	Solid	02/27/25 13:15	02/28/25 14:00
475-202-8	SB25-04 (12-18)	Solid	02/27/25 13:18	02/28/25 14:00
475-202-9	SB25-05 (0-3)	Solid	02/27/25 13:27	02/28/25 14:00
475-202-10	SB25-05 (12-18)	Solid	02/27/25 13:30	02/28/25 14:00
475-202-11	SB25-06 (0-3)	Solid	02/27/25 14:12	02/28/25 14:00
475-202-12	SB25-06 (12-18)	Solid	02/27/25 14:16	02/28/25 14:00
475-202-13	SB25-07 (0-3)	Solid	02/27/25 13:51	02/28/25 14:00
475-202-14	SB25-07 (12-18)	Solid	02/27/25 14:00	02/28/25 14:00
475-202-15	SB25-08 (0-3)	Solid	02/27/25 13:38	02/28/25 14:00
475-202-16	SB25-08 (12-18)	Solid	02/27/25 13:41	02/28/25 14:00
475-202-17	SB24-01R	Solid	02/27/25 12:54	02/28/25 14:00
475-202-18	SB24-03R	Solid	02/27/25 14:22	02/28/25 14:00
475-202-19	SB24-04R	Solid	02/27/25 14:46	02/28/25 14:00
475-202-20	Dup-1	Solid	02/27/25 14:46	02/28/25 14:00
475-202-21	Dup-2	Solid	02/27/25 14:36	02/28/25 14:00

5-202-1

3

A

5

6

7

Client Sample ID: SB25-01 (0-3)

Date Collected: 02/27/25 14:30

Lab Sample ID: 475-202-1

Matrix: Solid

Date Received: 02/28/25 14:00 Percent Solids: 58.9

Analyte	Result Qual	ifier RL	Unit	D	Analyzed	Dil Fac	Analys
1-Methylnaphthalene	<0.012	0.012	mg/Kg	<u></u>	03/04/25 16:07	1	JMR
2-Methylnaphthalene	<0.012	0.012	mg/Kg	☼	03/04/25 16:07	1	JMR
Acenaphthene	<0.012	0.012	mg/Kg	☼	03/04/25 16:07	1	JMR
Acenaphthylene	<0.012	0.012	mg/Kg	⊅	03/04/25 16:07	1	JMR
Anthracene	<0.012	0.012	mg/Kg	≎	03/04/25 16:07	1	JMR
Benzo[a]anthracene	0.020	0.012	mg/Kg	☼	03/04/25 16:07	1	JMR
Benzo[a]pyrene	0.020	0.012	mg/Kg	₩	03/04/25 16:07	1	JMR
Benzo[b]fluoranthene	0.029	0.012	mg/Kg	☼	03/04/25 16:07	1	JMR
Benzo[k]fluoranthene	< 0.012	0.012	mg/Kg	☼	03/04/25 16:07	1	JMR
Benzo[g,h,i]perylene	0.018	0.012	mg/Kg	₩	03/04/25 16:07	1	JMR
Chrysene	0.020	0.012	mg/Kg	☼	03/04/25 16:07	1	JMR
Dibenz[a,h]anthracene	< 0.012	0.012	mg/Kg	☼	03/04/25 16:07	1	JMR
Fluorene	<0.012	0.012	mg/Kg	⊅	03/04/25 16:07	1	JMR
Fluoranthene	0.031	0.012	mg/Kg	☼	03/04/25 16:07	1	JMR
Indeno[1,2,3-cd]pyrene	0.016	0.012	mg/Kg	≎	03/04/25 16:07	1	JMR
Naphthalene	<0.012	0.012	mg/Kg	₩	03/04/25 16:07	1	JMR
Phenanthrene	<0.012	0.012	mg/Kg	≎	03/04/25 16:07	1	JMR
Pyrene	0.027	0.012	mg/Kg	₩	03/04/25 16:07	1	JMR
Surrogate	%Recovery Qual	lifier Limits			Analyzed	Dil Fac	Analys
p-Terphenyl-d14 (Surr)	52	30 - 130			03/04/25 16:07	1	JMR

Method: 6020B - Metals (ICP/MS)							
Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	4.1	0.50	mg/Kg	☼	03/06/25 18:47	25	DS
Lead	660	0.50	mg/Kg	≎	03/06/25 18:47	25	DS

Lab Sample ID: 475-202-2 **Client Sample ID: SB25-01 (12-18)**

Date Collected: 02/27/25 14:36 **Matrix: Solid** Date Received: 02/28/25 14:00 **Percent Solids: 81.3**

Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.0085	0.0085	mg/Kg	☆	03/04/25 16:30	1	JMR
2-Methylnaphthalene	<0.0085	0.0085	mg/Kg	☼	03/04/25 16:30	1	JMR
Acenaphthene	<0.0085	0.0085	mg/Kg	☼	03/04/25 16:30	1	JMR
Acenaphthylene	<0.0085	0.0085	mg/Kg	₩	03/04/25 16:30	1	JMR
Anthracene	<0.0085	0.0085	mg/Kg	₩	03/04/25 16:30	1	JMR
Benzo[a]anthracene	0.018	0.0085	mg/Kg	₩	03/04/25 16:30	1	JMR
Benzo[a]pyrene	0.019	0.0085	mg/Kg	⊅	03/04/25 16:30	1	JMR
Benzo[b]fluoranthene	0.028	0.0085	mg/Kg	₩	03/04/25 16:30	1	JMR
Benzo[k]fluoranthene	0.0097	0.0085	mg/Kg	☼	03/04/25 16:30	1	JMR
Benzo[g,h,i]perylene	0.016	0.0085	mg/Kg	☼	03/04/25 16:30	1	JMR
Chrysene	0.021	0.0085	mg/Kg	☼	03/04/25 16:30	1	JMR
Dibenz[a,h]anthracene	<0.0085	0.0085	mg/Kg	₩	03/04/25 16:30	1	JMR
Fluorene	<0.0085	0.0085	mg/Kg	⊅	03/04/25 16:30	1	JMR
Fluoranthene	0.031	0.0085	mg/Kg	₩	03/04/25 16:30	1	JMR
Indeno[1,2,3-cd]pyrene	0.015	0.0085	mg/Kg	☆	03/04/25 16:30	1	JMR
Naphthalene	<0.0085	0.0085	mg/Kg	₽	03/04/25 16:30	1	JMR
Phenanthrene	0.0097	0.0085	mg/Kg	₩	03/04/25 16:30	1	JMR

Eurofins Northeast Concord

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-01 (12-18)

Date Collected: 02/27/25 14:36

Date Received: 02/28/25 14:00

Lab Sample ID: 475-202-2

Lab Sample ID: 475-202-3

Matrix: Solid

Percent Solids: 81.3

Mothod: 0070Ell Comissolatile Organ	nic Compounds by GC/MS - Low Level (Continued)
Method: 62/UE LL - Semivolatile Ordan	nic Compounds by GC/W3 - Low Level (Continued)

Analyte	Result Qualifier	RL	Unit	D Analyzed	Dil Fac Analyst
Pyrene	0.028	0.0085	mg/Kg	□ 03/04/25 16:30	1 JMR
Surrogate	%Recovery Qualifier	Limits		Analyzed	Dil Fac Analyst
p-Terphenyl-d14 (Surr)	58	30 - 130		03/04/25 16:30	1 JMR

Method: 6020B - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	4.2		0.50	mg/Kg	⊅	03/06/25 18:52	25	DS
Lead	540		0.50	mg/Kg	☼	03/06/25 18:52	25	DS

Client Sample ID: SB25-02 (0-3)

Date Collected: 02/27/25 14:48 **Matrix: Solid** Date Received: 02/28/25 14:00 Percent Solids: 56.5

	Method: 8270E LL - S	Semivolatile Or	rgani	c (Cor	npounds b	y GC/MS -	Low Level
П					_			

Analyte	Result Qua	ilifier RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.012	0.012	mg/Kg	<u></u>	03/04/25 16:52	1	JMR
2-Methylnaphthalene	<0.012	0.012	mg/Kg	₽	03/04/25 16:52	1	JMR
Acenaphthene	<0.012	0.012	mg/Kg	₩	03/04/25 16:52	1	JMR
Acenaphthylene	<0.012	0.012	mg/Kg	₩	03/04/25 16:52	1	JMR
Anthracene	<0.012	0.012	mg/Kg	₩	03/04/25 16:52	1	JMR
Benzo[a]anthracene	0.025	0.012	mg/Kg	₩	03/04/25 16:52	1	JMR
Benzo[a]pyrene	0.022	0.012	mg/Kg	₩	03/04/25 16:52	1	JMR
Benzo[b]fluoranthene	0.031	0.012	mg/Kg	₩	03/04/25 16:52	1	JMR
Benzo[k]fluoranthene	0.015	0.012	mg/Kg	₩	03/04/25 16:52	1	JMR
Benzo[g,h,i]perylene	0.021	0.012	mg/Kg	₩	03/04/25 16:52	1	JMR
Chrysene	0.026	0.012	mg/Kg	₽	03/04/25 16:52	1	JMR
Dibenz[a,h]anthracene	<0.012	0.012	mg/Kg	₽	03/04/25 16:52	1	JMR
Fluorene	<0.012	0.012	mg/Kg	₩	03/04/25 16:52	1	JMR
Fluoranthene	0.051	0.012	mg/Kg	₽	03/04/25 16:52	1	JMR
Indeno[1,2,3-cd]pyrene	0.020	0.012	mg/Kg	₽	03/04/25 16:52	1	JMR
Naphthalene	<0.012	0.012	mg/Kg	₽	03/04/25 16:52	1	JMR
Phenanthrene	0.024	0.012	mg/Kg	₩	03/04/25 16:52	1	JMR
Pyrene	0.040	0.012	mg/Kg	≎	03/04/25 16:52	1	JMR
Surrogate	%Recovery Qua	lifier Limits			Analyzed	Dil Fac	Analyst
n-Ternhenyl-d14 (Surr)		30 130			03/04/25 16:52	1	IMR

p-Terphenyl-d14 (Surr) 30 - 130 1 JMR 03/04/25 16:52

Method: 6020B - Metals (ICP/MS)

Analyte	Result Quali	fier RL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	2.8	0.50	mg/Kg	₩	03/06/25 18:57	25	DS
Lead	550	0.50	mg/Kg	₩	03/06/25 18:57	25	DS

Client Sample ID: SB25-02 (12-18)

Lab Sample ID: 475-202-4 Date Collected: 02/27/25 14:56 Matrix: Solid Date Received: 02/28/25 14:00 Percent Solids: 80.8

Method: 8270E LL	- Semivolatile Oi	rdanic Compounds	by GC/MS - Low Level

Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.0085	0.0085	mg/Kg	-	03/04/25 17:15	1	JMR
2-Methylnaphthalene	<0.0085	0.0085	mg/Kg	₩	03/04/25 17:15	1	JMR

Client Sample Results

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-02 (12-18)

Lab Sample ID: 475-202-4 Date Collected: 02/27/25 14:56 **Matrix: Solid**

Date Received: 02/28/25 14:00 Percent Solids: 80.8

Analyte	Result	Qualifier RL	Unit	D	Analyzed	Dil Fac	Analys
Acenaphthene	<0.0085	0.0085	mg/Kg	-	03/04/25 17:15	1	JMR
Acenaphthylene	<0.0085	0.0085	mg/Kg	₩	03/04/25 17:15	1	JMR
Anthracene	<0.0085	0.0085	mg/Kg	₩	03/04/25 17:15	1	JMR
Benzo[a]anthracene	0.017	0.0085	mg/Kg	₩	03/04/25 17:15	1	JMR
Benzo[a]pyrene	0.017	0.0085	mg/Kg	₩	03/04/25 17:15	1	JMR
Benzo[b]fluoranthene	0.024	0.0085	mg/Kg	☆	03/04/25 17:15	1	JMR
Benzo[k]fluoranthene	0.0089	0.0085	mg/Kg	☆	03/04/25 17:15	1	JMR
Benzo[g,h,i]perylene	0.014	0.0085	mg/Kg	₩	03/04/25 17:15	1	JMR
Chrysene	0.020	0.0085	mg/Kg	₩	03/04/25 17:15	1	JMR
Dibenz[a,h]anthracene	<0.0085	0.0085	mg/Kg	₩	03/04/25 17:15	1	JMR
Fluorene	<0.0085	0.0085	mg/Kg	☼	03/04/25 17:15	1	JMR
Fluoranthene	0.035	0.0085	mg/Kg	₩	03/04/25 17:15	1	JMR
Indeno[1,2,3-cd]pyrene	0.013	0.0085	mg/Kg	₩	03/04/25 17:15	1	JMR
Naphthalene	<0.0085	0.0085	mg/Kg	☆	03/04/25 17:15	1	JMR
Phenanthrene	0.015	0.0085	mg/Kg	₩	03/04/25 17:15	1	JMR
Pyrene	0.029	0.0085	mg/Kg	≎	03/04/25 17:15	1	JMR
Surrogate	%Recovery	Qualifier Limits			Analyzed	Dil Fac	Analys
p-Terphenyl-d14 (Surr)	59	30 - 130			03/04/25 17:15	1	JMR

Method: 6020B - Metals (ICP/M	S)							
Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst	
Arsenic	3.8	0.50	mg/Kg	₩	03/06/25 19:02	25	DS	
Lead	830	0.50	mg/Kg	☆	03/06/25 19:02	25	DS	

Client Sample ID: SB25-03 (0-3) Lab Sample ID: 475-202-5 Date Collected: 02/27/25 13:03 **Matrix: Solid** Date Received: 02/28/25 14:00 Percent Solids: 90.5

Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.038	0.038	mg/Kg	<u></u>	03/04/25 17:37	1	JMR
2-Methylnaphthalene	<0.038	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Acenaphthene	<0.038	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Acenaphthylene	<0.038	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Anthracene	<0.038	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Benzo[a]anthracene	<0.038	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Benzo[a]pyrene	0.051	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Benzo[b]fluoranthene	0.054	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Benzo[k]fluoranthene	<0.038	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Benzo[g,h,i]perylene	0.043	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Chrysene	0.076	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Dibenz[a,h]anthracene	<0.038	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Fluorene	<0.038	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Fluoranthene	<0.038	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Indeno[1,2,3-cd]pyrene	<0.038	0.038	mg/Kg	☼	03/04/25 17:37	1	JMR
Naphthalene	<0.038	0.038	mg/Kg		03/04/25 17:37	1	JMR
Phenanthrene	<0.038	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR
Pyrene	<0.038	0.038	mg/Kg	₩	03/04/25 17:37	1	JMR

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-03 (0-3)

Date Collected: 02/27/25 13:03 Date Received: 02/28/25 14:00

Client: KAS Inc

Lab Sample ID: 475-202-5

Matrix: Solid

Percent Solids: 90.5

Method: 6020B - Metals (ICP/MS)

Method: 0020D - Metals (101 /MO)									
Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst	
Arsenic	2.2		0.50	mg/Kg	∌	03/06/25 19:07	25	DS	
Lead	100		0.50	mg/Kg	₩	03/06/25 19:07	25	DS	

Client Sample ID: SB25-03 (12-18)

Lab Sample ID: 475-202-6

 Date Collected: 02/27/25 13:06
 Matrix: Solid

 Date Received: 02/28/25 14:00
 Percent Solids: 82.8

Analyte	Result Qu	alifier RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.0083	0.0083	mg/Kg	☆	03/04/25 18:00	1	JMR
2-Methylnaphthalene	<0.0083	0.0083	mg/Kg	₽	03/04/25 18:00	1	JMR
Acenaphthene	<0.0083	0.0083	mg/Kg	☆	03/04/25 18:00	1	JMR
Acenaphthylene	<0.0083	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Anthracene	<0.0083	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Benzo[a]anthracene	0.0094	0.0083	mg/Kg	₽	03/04/25 18:00	1	JMR
Benzo[a]pyrene	0.0086	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Benzo[b]fluoranthene	0.014	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Benzo[k]fluoranthene	< 0.0083	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Benzo[g,h,i]perylene	<0.0083	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Chrysene	0.011	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Dibenz[a,h]anthracene	< 0.0083	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Fluorene	<0.0083	0.0083	mg/Kg	☼	03/04/25 18:00	1	JMR
Fluoranthene	0.010	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Indeno[1,2,3-cd]pyrene	<0.0083	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Naphthalene	<0.0083	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Phenanthrene	< 0.0083	0.0083	mg/Kg	₩	03/04/25 18:00	1	JMR
Pyrene	0.0094	0.0083	mg/Kg	≎	03/04/25 18:00	1	JMR
Surrogate	%Recovery Qu	alifier Limits			Analyzed	Dil Fac	Analyst
p-Terphenyl-d14 (Surr)	55	30 - 130			03/04/25 18:00	1	JMR

Method: 6020B - Metals (ICP/M	3)							
Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst	
Arsenic	3.7	0.50	mg/Kg	₩	03/06/25 19:27	25	DS	
Lead	680	0.50	mg/Kg	₩	03/06/25 19:27	25	DS	

Client Sample ID: SB25-04 (0-3)

Date Collected: 02/27/25 13:15

Lab Sample ID: 475-202-7

Matrix: Solid

Date Received: 02/28/25 14:00 Percent Solids: 69.0

Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.050	0.050	mg/Kg	— <u></u>	03/04/25 18:23	1	JMR
2-Methylnaphthalene	<0.050	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Acenaphthene	<0.050	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Acenaphthylene	<0.050	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Anthracene	0.071	0.050	mg/Kg	₽	03/04/25 18:23	1	JMR
Benzo[a]anthracene	0.37	0.050	mg/Kg	☼	03/04/25 18:23	1	JMR

Eurofins Northeast Concord

3

5

6

7

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-04 (0-3)

Date Collected: 02/27/25 13:15

Date Received: 02/28/25 14:00

Client: KAS Inc

Lab Sample ID: 475-202-7

Matrix: Solid

Percent Solids: 69.0

Method: 8270E LL - Semivolatile Organic Compounds by GC/MS - Low Lev	el (Continued)
--	----------------

Analyte	Result Qualific	er RL	Unit	D	Analyzed	Dil Fac	Analyst
Benzo[a]pyrene	0.36	0.050	mg/Kg	<u></u>	03/04/25 18:23	1	JMR
Benzo[b]fluoranthene	0.56	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Benzo[k]fluoranthene	0.21	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Benzo[g,h,i]perylene	0.11	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Chrysene	0.44	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Dibenz[a,h]anthracene	<0.050	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Fluorene	<0.050	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Fluoranthene	1.0	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Indeno[1,2,3-cd]pyrene	0.14	0.050	mg/Kg	☼	03/04/25 18:23	1	JMR
Naphthalene	<0.050	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Phenanthrene	0.55	0.050	mg/Kg	☼	03/04/25 18:23	1	JMR
Pyrene	0.67	0.050	mg/Kg	₩	03/04/25 18:23	1	JMR
Surrogate	%Recovery Qualific	er Limits			Analyzed	Dil Fac	Analyst
p-Terphenyl-d14 (Surr)	63	30 - 130			03/04/25 18:23	1	JMR

Method: 6020B - Metals (ICP/MS)

motinoa: 3020B motalo (1017mo)									
Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst	
Arsenic	4.1		0.50	mg/Kg	<u></u>	03/06/25 19:32	25	DS	
Lead	410		0.50	mg/Kg	☼	03/06/25 19:32	25	DS	

Client Sample ID: SB25-04 (12-18)

Date Collected: 02/27/25 13:18 Date Received: 02/28/25 14:00

Lab Sample ID: 475-202-8

Matrix: Solid

Percent Solids: 75.7

Analyte	Result Qualifie	r RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.0092	0.0092	mg/Kg	<u></u>	03/04/25 18:45	1	JMR
2-Methylnaphthalene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Acenaphthene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Acenaphthylene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Anthracene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Benzo[a]anthracene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Benzo[a]pyrene	<0.0092	0.0092	mg/Kg	₽	03/04/25 18:45	1	JMR
Benzo[b]fluoranthene	<0.0092	0.0092	mg/Kg	☼	03/04/25 18:45	1	JMR
Benzo[k]fluoranthene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Benzo[g,h,i]perylene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Chrysene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Dibenz[a,h]anthracene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Fluorene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Fluoranthene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Indeno[1,2,3-cd]pyrene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Naphthalene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Phenanthrene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Pyrene	<0.0092	0.0092	mg/Kg	₩	03/04/25 18:45	1	JMR
Surrogate	%Recovery Qualifie	r Limits			Analyzed	Dil Fac	Analyst
p-Terphenyl-d14 (Surr)	53	30 - 130			03/04/25 18:45	1	JMR

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-04 (12-18)

Date Collected: 02/27/25 13:18 Date Received: 02/28/25 14:00

Client: KAS Inc

Lab Sample ID: 475-202-8

Matrix: Solid

Percent Solids: 75.7

Method: 6020B - Metals (ICP/MS)								
Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst	
Arsenic	3.3	0.50	mg/Kg	-	03/06/25 19:37	25	DS	
Lead	130	0.50	mg/Kg	☆	03/06/25 19:37	25	DS	

Lab Sample ID: 475-202-9 **Client Sample ID: SB25-05 (0-3)**

Date Collected: 02/27/25 13:27 **Matrix: Solid** Date Received: 02/28/25 14:00 Percent Solids: 89.8

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.038		0.038	mg/Kg	*	03/04/25 19:08	1	JMR
2-Methylnaphthalene	<0.038		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Acenaphthene	<0.038		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Acenaphthylene	<0.038		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Anthracene	<0.038		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Benzo[a]anthracene	0.054		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Benzo[a]pyrene	0.083		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Benzo[b]fluoranthene	0.12		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Benzo[k]fluoranthene	<0.038		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Benzo[g,h,i]perylene	0.065		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Chrysene	0.11		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Dibenz[a,h]anthracene	<0.038		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Fluorene	<0.038		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Fluoranthene	0.094		0.038	mg/Kg	₽	03/04/25 19:08	1	JMR
Indeno[1,2,3-cd]pyrene	<0.038		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Naphthalene	<0.038		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Phenanthrene	<0.038		0.038	mg/Kg	₩	03/04/25 19:08	1	JMR
Pyrene	0.097		0.038	mg/Kg	₽	03/04/25 19:08	1	JMR
Surrogate	%Recovery	Qualifier	Limits			Analyzed	Dil Fac	Analyst
p-Terphenyl-d14 (Surr)	78		30 - 130			03/04/25 19:08	1	JMR

Method:	6020B - Metals	(ICP/MS)

Analyte	Result (Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst	
Arsenic	7.1		0.50	mg/Kg	₩	03/06/25 19:43	25	DS	
Lead	1000		0.50	mg/Kg	₩	03/06/25 19:43	25	DS	

Client Sample ID: SB25-05 (12-18)

Lab Sample ID: 475-202-10 Date Collected: 02/27/25 13:30 **Matrix: Solid** Date Received: 02/28/25 14:00 Percent Solids: 90.6

Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.0076	0.0076	mg/Kg	<u></u>	03/04/25 19:30	1	JMR
2-Methylnaphthalene	<0.0076	0.0076	mg/Kg	₩	03/04/25 19:30	1	JMR
Acenaphthene	<0.0076	0.0076	mg/Kg	☼	03/04/25 19:30	1	JMR
Acenaphthylene	<0.0076	0.0076	mg/Kg	₩	03/04/25 19:30	1	JMR
Anthracene	<0.0076	0.0076	mg/Kg	☼	03/04/25 19:30	1	JMR
Benzo[a]anthracene	<0.0076	0.0076	mg/Kg	₩	03/04/25 19:30	1	JMR
Benzo[a]pyrene	<0.0076	0.0076	mg/Kg	₩	03/04/25 19:30	1	JMR
Benzo[b]fluoranthene	<0.0076	0.0076	mg/Kg	☼	03/04/25 19:30	1	JMR
Benzo[k]fluoranthene	<0.0076	0.0076	mg/Kg	₽	03/04/25 19:30	1	JMR

Client Sample Results

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-05 (12-18)

Lab Sample ID: 475-202-10 Date Collected: 02/27/25 13:30

Matrix: Solid Date Received: 02/28/25 14:00 Percent Solids: 90.6

Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Benzo[g,h,i]perylene	<0.0076	0.0076	mg/Kg	⊅	03/04/25 19:30	1	JMR
Chrysene	<0.0076	0.0076	mg/Kg	⊅	03/04/25 19:30	1	JMR
Dibenz[a,h]anthracene	<0.0076	0.0076	mg/Kg	☼	03/04/25 19:30	1	JMR
Fluorene	<0.0076	0.0076	mg/Kg	₽	03/04/25 19:30	1	JMR
Fluoranthene	<0.0076	0.0076	mg/Kg	☼	03/04/25 19:30	1	JMR
Indeno[1,2,3-cd]pyrene	<0.0076	0.0076	mg/Kg	☼	03/04/25 19:30	1	JMR
Naphthalene	<0.0076	0.0076	mg/Kg	₽	03/04/25 19:30	1	JMR
Phenanthrene	<0.0076	0.0076	mg/Kg	☼	03/04/25 19:30	1	JMR
Pyrene	<0.0076	0.0076	mg/Kg	₩	03/04/25 19:30	1	JMR
Surrogate	%Recovery Qualifier	Limits			Analyzed	Dil Fac	Analyst

Method: 6020B - Metals (ICP/MS)

p-Terphenyl-d14 (Surr)

Analyte	Result (Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	2.0		0.50	mg/Kg	₩	03/06/25 19:48	25	DS
Lead	11		0.50	mg/Kg	₩	03/06/25 19:48	25	DS

30 - 130

Client Sample ID: SB25-06 (0-3)

Lab Sample ID: 475-202-11 Date Collected: 02/27/25 14:12

Matrix: Solid Date Received: 02/28/25 14:00 Percent Solids: 73.6

Analyte	Result Qualif	ier RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.046	0.046	mg/Kg	-	03/04/25 19:53	1	JMR
2-Methylnaphthalene	<0.046	0.046	mg/Kg	☼	03/04/25 19:53	1	JMR
Acenaphthene	<0.046	0.046	mg/Kg	☼	03/04/25 19:53	1	JMR
Acenaphthylene	<0.046	0.046	mg/Kg	⊅	03/04/25 19:53	1	JMR
Anthracene	<0.046	0.046	mg/Kg	☼	03/04/25 19:53	1	JMR
Benzo[a]anthracene	<0.046	0.046	mg/Kg	₩	03/04/25 19:53	1	JMR
Benzo[a]pyrene	0.088	0.046	mg/Kg	⊅	03/04/25 19:53	1	JMR
Benzo[b]fluoranthene	0.11	0.046	mg/Kg	☼	03/04/25 19:53	1	JMR
Benzo[k]fluoranthene	<0.046	0.046	mg/Kg	₩	03/04/25 19:53	1	JMR
Benzo[g,h,i]perylene	<0.046	0.046	mg/Kg	₩	03/04/25 19:53	1	JMR
Chrysene	0.11	0.046	mg/Kg	₩	03/04/25 19:53	1	JMR
Dibenz[a,h]anthracene	<0.046	0.046	mg/Kg	₩	03/04/25 19:53	1	JMR
Fluorene	<0.046	0.046	mg/Kg	⊅	03/04/25 19:53	1	JMR
Fluoranthene	<0.046	0.046	mg/Kg	₩	03/04/25 19:53	1	JMR
Indeno[1,2,3-cd]pyrene	<0.046	0.046	mg/Kg	☼	03/04/25 19:53	1	JMR
Naphthalene	<0.046	0.046	mg/Kg	₩	03/04/25 19:53	1	JMR
Phenanthrene	<0.046	0.046	mg/Kg	☼	03/04/25 19:53	1	JMR
Pyrene	0.071	0.046	mg/Kg	₩	03/04/25 19:53	1	JMR
Surrogate	%Recovery Qualif	ier Limits			Analyzed	Dil Fac	Analyst
n-Ternhenyl-d14 (Surr)		30 130			03/04/25 10:53		IMD

Surrogate	%Recovery Qualifier	Limits	Analyzed	Dil Fac Analyst
p-Terphenyl-d14 (Surr)	66	30 - 130	03/04/25 19:53	1 JMR

Method: 6020B - Metals (ICP/MS)

Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	3.0	0.50	mg/Kg	₩	03/06/25 20:18	25	DS
Lead	85	0.50	ma/Ka	ď÷	03/06/25 20:18	25	DS

Eurofins Northeast Concord

03/04/25 19:30

1 JMR

2

Client Sample Results

Client: KAS Inc Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-06 (12-18)

Date Collected: 02/27/25 14:16 Date Received: 02/28/25 14:00 Lab Sample ID: 475-202-12

Matrix: Solid

Job ID: 475-202-1

Percent Solids: 79.8

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.043		0.043	mg/Kg	<u></u>	03/04/25 20:16	1	JMR
2-Methylnaphthalene	< 0.043		0.043	mg/Kg	☼	03/04/25 20:16	1	JMR
Acenaphthene	< 0.043		0.043	mg/Kg	≎	03/04/25 20:16	1	JMR
Acenaphthylene	<0.043		0.043	mg/Kg	≎	03/04/25 20:16	1	JMR
Anthracene	<0.043		0.043	mg/Kg	≎	03/04/25 20:16	1	JMR
Benzo[a]anthracene	< 0.043		0.043	mg/Kg	☼	03/04/25 20:16	1	JMR
Benzo[a]pyrene	<0.043		0.043	mg/Kg	☼	03/04/25 20:16	1	JMR
Benzo[b]fluoranthene	<0.043		0.043	mg/Kg	≎	03/04/25 20:16	1	JMR
Benzo[k]fluoranthene	<0.043		0.043	mg/Kg	≎	03/04/25 20:16	1	JMR
Benzo[g,h,i]perylene	<0.043		0.043	mg/Kg	₩	03/04/25 20:16	1	JMR
Chrysene	< 0.043		0.043	mg/Kg	☼	03/04/25 20:16	1	JMR
Dibenz[a,h]anthracene	< 0.043		0.043	mg/Kg	☼	03/04/25 20:16	1	JMR
Fluorene	<0.043		0.043	mg/Kg	☼	03/04/25 20:16	1	JMR
Fluoranthene	< 0.043		0.043	mg/Kg	☼	03/04/25 20:16	1	JMR
Indeno[1,2,3-cd]pyrene	< 0.043		0.043	mg/Kg	☼	03/04/25 20:16	1	JMR
Naphthalene	<0.043		0.043	mg/Kg	₽	03/04/25 20:16	1	JMR
Phenanthrene	< 0.043		0.043	mg/Kg	☼	03/04/25 20:16	1	JMR
Pyrene	<0.043		0.043	mg/Kg	₩	03/04/25 20:16	1	JMR
Surrogate	%Recovery	Qualifier	Limits			Analyzed	Dil Fac	Analys
p-Terphenyl-d14 (Surr)	66		30 - 130			03/04/25 20:16	1	JMR

	Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
7	Arsenic	6.1		0.50	mg/Kg	☼	03/06/25 20:23	25	DS
L	Lead	270		0.50	mg/Kg	₩	03/06/25 20:23	25	DS

Client Sample ID: SB25-07 (0-3)

Date Collected: 02/27/25 13:51

Date Received: 02/28/25 14:00

Lab	Sample	ID:	475-202-13
			Matrix: Solid

Percent Solids: 84.7

Method: 8270E LL - Semive Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.041	0.041	mg/Kg	☼	03/04/25 20:38	1	JMR
2-Methylnaphthalene	<0.041	0.041	mg/Kg	☼	03/04/25 20:38	1	JMR
Acenaphthene	<0.041	0.041	mg/Kg	☼	03/04/25 20:38	1	JMR
Acenaphthylene	<0.041	0.041	mg/Kg	₩	03/04/25 20:38	1	JMR
Anthracene	<0.041	0.041	mg/Kg	☼	03/04/25 20:38	1	JMR
Benzo[a]anthracene	0.043	0.041	mg/Kg	☼	03/04/25 20:38	1	JMR
Benzo[a]pyrene	0.047	0.041	mg/Kg	₩	03/04/25 20:38	1	JMR
Benzo[b]fluoranthene	0.067	0.041	mg/Kg	☼	03/04/25 20:38	1	JMR
Benzo[k]fluoranthene	<0.041	0.041	mg/Kg	☼	03/04/25 20:38	1	JMR
Benzo[g,h,i]perylene	<0.041	0.041	mg/Kg	₩	03/04/25 20:38	1	JMR
Chrysene	0.043	0.041	mg/Kg	☼	03/04/25 20:38	1	JMR
Dibenz[a,h]anthracene	<0.041	0.041	mg/Kg	☼	03/04/25 20:38	1	JMR
Fluorene	<0.041	0.041	mg/Kg	₩	03/04/25 20:38	1	JMR
Fluoranthene	0.059	0.041	mg/Kg	☼	03/04/25 20:38	1	JMR
Indeno[1,2,3-cd]pyrene	<0.041	0.041	mg/Kg	☼	03/04/25 20:38	1	JMR
Naphthalene	<0.041	0.041	mg/Kg	₩	03/04/25 20:38	1	JMR
Phenanthrene	<0.041	0.041	mg/Kg	₽	03/04/25 20:38	1	JMR

Client Sample Results

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-07 (0-3)

Date Collected: 02/27/25 13:51

Lab Sample ID: 475-202-13

Matrix: Solid

Date Received: 02/28/25 14:00 Percent Solids: 84.7

Method: 8270E LL -	Semivolatile Organic Compounds k	y GC/MS -	Low Level (Co	ntinue	ed)
Analyte	Result Qualifier	RL	Unit	D	Analyzed

Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Pyrene	0.051	0.041	mg/Kg	-	03/04/25 20:38	1	JMR
Surrogate	%Recovery Qualifier	Limits			Analyzed	Dil Fac	Analyst
p-Terphenyl-d14 (Surr)	72	30 - 130			03/04/25 20:38		JMR

Method: 6020B - Metals (ICP/MS)

motinour cozoz motiaio (ici imo)									
Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst	
Arsenic	2.7		0.50	mg/Kg	≎	03/06/25 20:28	25	DS	
Lead	120		0.50	mg/Kg	≎	03/06/25 20:28	25	DS	

Client Sample ID: SB25-07 (12-18)

Date Collected: 02/27/25 14:00 Date Received: 02/28/25 14:00

Lab Sample ID: 475-202-14 **Matrix: Solid** Percent Solids: 76.5

Analyte	Result Qu	alifier RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.045	0.045	mg/Kg	☼	03/04/25 21:01	1	JMR
2-Methylnaphthalene	<0.045	0.045	mg/Kg	₩	03/04/25 21:01	1	JMR
Acenaphthene	<0.045	0.045	mg/Kg	☼	03/04/25 21:01	1	JMR
Acenaphthylene	<0.045	0.045	mg/Kg	₩	03/04/25 21:01	1	JMR
Anthracene	<0.045	0.045	mg/Kg	₩	03/04/25 21:01	1	JMR
Benzo[a]anthracene	0.047	0.045	mg/Kg	☼	03/04/25 21:01	1	JMR
Benzo[a]pyrene	0.047	0.045	mg/Kg	₩	03/04/25 21:01	1	JMR
Benzo[b]fluoranthene	0.073	0.045	mg/Kg	₩	03/04/25 21:01	1	JMR
Benzo[k]fluoranthene	<0.045	0.045	mg/Kg	☼	03/04/25 21:01	1	JMR
Benzo[g,h,i]perylene	<0.045	0.045	mg/Kg	₩	03/04/25 21:01	1	JMR
Chrysene	<0.045	0.045	mg/Kg	☼	03/04/25 21:01	1	JMR
Dibenz[a,h]anthracene	<0.045	0.045	mg/Kg	₩	03/04/25 21:01	1	JMR
Fluorene	<0.045	0.045	mg/Kg	₩	03/04/25 21:01	1	JMR
Fluoranthene	0.082	0.045	mg/Kg	₩	03/04/25 21:01	1	JMR
Indeno[1,2,3-cd]pyrene	<0.045	0.045	mg/Kg	₩	03/04/25 21:01	1	JMR
Naphthalene	<0.045	0.045	mg/Kg	₽	03/04/25 21:01	1	JMR
Phenanthrene	<0.045	0.045	mg/Kg	☆	03/04/25 21:01	1	JMR
Pyrene	0.069	0.045	mg/Kg	₩	03/04/25 21:01	1	JMR
Surrogate	%Recovery Qu	alifier Limits			Analyzed	Dil Fac	Analyst
p-Terphenyl-d14 (Surr)	58	30 - 130			03/04/25 21:01	1	JMR

Method: 6020B - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	5.8		0.50	mg/Kg	<u></u>	03/06/25 20:33	25	DS
Lead	210		0.50	mg/Kg	₩	03/06/25 20:33	25	DS

Client Sample ID: SB25-08 (0-3)

Lab Sample ID: 475-202-15 Date Collected: 02/27/25 13:38 **Matrix: Solid** Date Received: 02/28/25 14:00 Percent Solids: 76.3

Mothod: 9270E LL	- Semivolatile Organic	Compounde by	CC/MS Low Lovel
Method: 62/UE LL	- Semiyolatile Ordanic	Compounds by	GC/M3 - LOW Level

Analyte	Result Qualifier	RL	Unit D	Analyzed	Dil Fac Analyst	
1-Methylnaphthalene	<0.0091	0.0091	mg/Kg =	03/04/25 21:24	1 JMR	
2-Methylnaphthalene	<0.0091	0.0091	mg/Kg ☆	03/04/25 21:24	1 JMR	

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-08 (0-3)

Date Collected: 02/27/25 13:38 Date Received: 02/28/25 14:00

Client: KAS Inc

Lab Sample ID: 475-202-15

Matrix: Solid

Percent Solids: 76.3

Method: 8270E LL - Semivolatile	Onwarda Camanaunda bu CC/M	C a.u. a.u.a (Camtimus al)
Method: 82/UE LL - Semivolatile	Urganic Compounds by GC/W	5 - LOW Level (Continued)
		2011 2010: (00::::::::::::::::::::::::::::::::

Analyte	Result (Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Acenaphthene	<0.0091		0.0091	mg/Kg	-	03/04/25 21:24	1	JMR
Acenaphthylene	<0.0091		0.0091	mg/Kg	⊅	03/04/25 21:24	1	JMR
Anthracene	<0.0091		0.0091	mg/Kg	₩	03/04/25 21:24	1	JMR
Benzo[a]anthracene	0.013		0.0091	mg/Kg	₩	03/04/25 21:24	1	JMR
Benzo[a]pyrene	0.014		0.0091	mg/Kg	₩	03/04/25 21:24	1	JMR
Benzo[b]fluoranthene	0.027		0.0091	mg/Kg	₩	03/04/25 21:24	1	JMR
Benzo[k]fluoranthene	<0.0091		0.0091	mg/Kg	☼	03/04/25 21:24	1	JMR
Benzo[g,h,i]perylene	<0.0091		0.0091	mg/Kg	₩	03/04/25 21:24	1	JMR
Chrysene	0.016		0.0091	mg/Kg	☆	03/04/25 21:24	1	JMR
Dibenz[a,h]anthracene	<0.0091		0.0091	mg/Kg	☼	03/04/25 21:24	1	JMR
Fluorene	<0.0091		0.0091	mg/Kg	⊅	03/04/25 21:24	1	JMR
Fluoranthene	0.025		0.0091	mg/Kg	₩	03/04/25 21:24	1	JMR
Indeno[1,2,3-cd]pyrene	<0.0091		0.0091	mg/Kg	₩	03/04/25 21:24	1	JMR
Naphthalene	<0.0091		0.0091	mg/Kg	₩	03/04/25 21:24	1	JMR
Phenanthrene	<0.0091		0.0091	mg/Kg	₩	03/04/25 21:24	1	JMR
Pyrene	0.019		0.0091	mg/Kg	☼	03/04/25 21:24	1	JMR
Surrogate	%Recovery	Qualifier	Limits			Analyzed	Dil Fac	Analyst
p-Terphenyl-d14 (Surr)	41		30 - 130			03/04/25 21:24	1	JMR

Method: 6020B - Metals (ICP/MS)

mountain color mount (rot mo)									
Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst	
Arsenic	3.2		0.50	mg/Kg	— <u>—</u>	03/06/25 20:38	25	DS	
Lead	40		0.50	mg/Kg	₩	03/06/25 20:38	25	DS	

Client Sample ID: SB25-08 (12-18)

Date Collected: 02/27/25 13:41 Date Received: 02/28/25 14:00 Lab Sample ID: 475-202-16

Matrix: Solid Percent Solids: 91.7

Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.037	0.037	mg/Kg	₩	03/04/25 21:46	1	JMR
2-Methylnaphthalene	<0.037	0.037	mg/Kg	☼	03/04/25 21:46	1	JMR
Acenaphthene	<0.037	0.037	mg/Kg	☼	03/04/25 21:46	1	JMR
Acenaphthylene	<0.037	0.037	mg/Kg	≎	03/04/25 21:46	1	JMR
Anthracene	<0.037	0.037	mg/Kg	☼	03/04/25 21:46	1	JMR
Benzo[a]anthracene	<0.037	0.037	mg/Kg	☼	03/04/25 21:46	1	JMR
Benzo[a]pyrene	<0.037	0.037	mg/Kg	≎	03/04/25 21:46	1	JMR
Benzo[b]fluoranthene	<0.037	0.037	mg/Kg	☼	03/04/25 21:46	1	JMR
Benzo[k]fluoranthene	<0.037	0.037	mg/Kg	≎	03/04/25 21:46	1	JMR
Benzo[g,h,i]perylene	<0.037	0.037	mg/Kg	≎	03/04/25 21:46	1	JMR
Chrysene	<0.037	0.037	mg/Kg	☼	03/04/25 21:46	1	JMR
Dibenz[a,h]anthracene	<0.037	0.037	mg/Kg	≎	03/04/25 21:46	1	JMR
Fluorene	<0.037	0.037	mg/Kg	₽	03/04/25 21:46	1	JMR
Fluoranthene	<0.037	0.037	mg/Kg	≎	03/04/25 21:46	1	JMR
Indeno[1,2,3-cd]pyrene	<0.037	0.037	mg/Kg	≎	03/04/25 21:46	1	JMR
Naphthalene	<0.037	0.037	mg/Kg	₽	03/04/25 21:46	1	JMR
Phenanthrene	<0.037	0.037	mg/Kg	≎	03/04/25 21:46	1	JMR
Pyrene	< 0.037	0.037	mg/Kg	₩	03/04/25 21:46	1	JMR

Client Sample Results

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-08 (12-18)

Lab Sample ID: 475-202-16 Date Collected: 02/27/25 13:41

Matrix: Solid

Date Received: 02/28/25 14:00 Percent Solids: 91.7

Surrogate p-Terphenyl-d14 (Surr)	%Recovery Qualifier 54	30 - 130		Analyzed 03/04/25 21:46	Dil Fac	Analyst JMR
- Method: 6020B - Metals ((ICP/MS)					
Analyte	Result Qualifier	RL	Unit	D Analyzed	Dil Fac	Analyst
Arsenic	2.4	0.50	mg/Kg	© 03/06/25 20:59	25	DS

Client Sample ID: SB24-01R Lab Sample ID: 475-202-17

Date Collected: 02/27/25 12:54

Date Received: 02/28/25 14:00

Matrix: Solid

Method: 6020B - Metals (ICP	P/MS) - SPLP East							
Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst	
Arsenic	<0.010	0.010	mg/L		03/06/25 21:45	10	DS	
Lead	0.98	0.010	mg/L		03/06/25 21:45	10	DS	

Client Sample ID: SB24-03R Lab Sample ID: 475-202-18 **Matrix: Solid**

Date Collected: 02/27/25 14:22 Date Received: 02/28/25 14:00

Method	l: 6020B - Metals (ICP/MS) - SPLP	East					
Analyte	Result	Qualifier RL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	<0.010	0.010	mg/L		03/06/25 21:50	10	DS
Lead	0.91	0.010	mg/L		03/06/25 21:50	10	DS

Client Sample ID: SB24-04R Lab Sample ID: 475-202-19 Date Collected: 02/27/25 14:46

Date Received: 02/28/25 14:00

Method: 6020B - Meta	ils (ICP/MS) - SPLP East						
Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	<0.010	0.010	mg/L		03/06/25 21:55	10	DS
Lead	0.43	0.010	mg/L		03/06/25 21:55	10	DS

Client Sample ID: Dup-1 Lab Sample ID: 475-202-20

Date Collected: 02/27/25 14:46

Date Received: 02/28/25 14:00

Date Received. 02/20/23	14.00				
Method: 6020B - Metals	(ICP/MS) - SPLP East				
Analyte	Result Qualifier	RL	Unit	D Analyzed	Dil Fac Analyst
Arsenic	<0.010	0.010	mg/L	03/06/25 22:00	10 DS
Lead	0.47	0.010	mg/L	03/06/25 22:00	10 DS

Lab Sample ID: 475-202-21 Client Sample ID: Dup-2

Date Collected: 02/27/25 14:36 **Matrix: Solid** Date Received: 02/28/25 14:00 Percent Solids: 80.2

Method: 8270E LL - Semi	volatile Organic Compound	ds by GC/MS -	Low Level				
Analyte	Result Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
1-Methylnaphthalene	<0.0086	0.0086	mg/Kg	-	03/04/25 22:09	1	JMR
2-Methylnaphthalene	<0.0086	0.0086	mg/Kg	☼	03/04/25 22:09	1	JMR
Acenaphthene	<0.0086	0.0086	mg/Kg	☼	03/04/25 22:09	1	JMR
Acenaphthylene	<0.0086	0.0086	mg/Kg	☼	03/04/25 22:09	1	JMR

Eurofins Northeast Concord

Matrix: Solid

Matrix: Solid

Client Sample Results

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Client Sample ID: Dup-2 Lab Sample ID: 475-202-21

Date Collected: 02/27/25 14:36 **Matrix: Solid** Date Received: 02/28/25 14:00 Percent Solids: 80.2

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Anthracene	<0.0086		0.0086	mg/Kg	— <u></u>	03/04/25 22:09	1	JMR
Benzo[a]anthracene	0.020		0.0086	mg/Kg	₩	03/04/25 22:09	1	JMR
Benzo[a]pyrene	0.020		0.0086	mg/Kg	₩	03/04/25 22:09	1	JMR
Benzo[b]fluoranthene	0.035		0.0086	mg/Kg	₩	03/04/25 22:09	1	JMR
Benzo[k]fluoranthene	0.012		0.0086	mg/Kg	₩	03/04/25 22:09	1	JMR
Benzo[g,h,i]perylene	<0.0086		0.0086	mg/Kg	₩	03/04/25 22:09	1	JMR
Chrysene	0.025		0.0086	mg/Kg	☼	03/04/25 22:09	1	JMR
Dibenz[a,h]anthracene	<0.0086		0.0086	mg/Kg	₩	03/04/25 22:09	1	JMR
Fluorene	<0.0086		0.0086	mg/Kg	₩	03/04/25 22:09	1	JMR
Fluoranthene	0.038		0.0086	mg/Kg	₩	03/04/25 22:09	1	JMR
Indeno[1,2,3-cd]pyrene	<0.0086		0.0086	mg/Kg	☼	03/04/25 22:09	1	JMR
Naphthalene	<0.0086		0.0086	mg/Kg	₩	03/04/25 22:09	1	JMR
Phenanthrene	0.012		0.0086	mg/Kg	₩	03/04/25 22:09	1	JMR
Pyrene	0.033		0.0086	mg/Kg	≎	03/04/25 22:09	1	JMR
Surrogate	%Recovery	Qualifier	Limits			Analyzed	Dil Fac	Analyst
p-Terphenyl-d14 (Surr)	40		30 - 130			03/04/25 22:09	1	JMR
Method: 6020B - Metals ((ICP/MS)							
Analyte	•	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	3.7		0.50	ma/Ka	— <u> </u>	03/06/25 21:04	25	DS

Welliou. 6020D - Welais (ICP/WS)									
Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst	
Arsenic	3.7		0.50	mg/Kg	☼	03/06/25 21:04	25	DS	
Lead	470		0.50	mg/Kg	₩	03/06/25 21:04	25	DS	

Client Sample ID: SB25-01 (0-3)

Client: KAS Inc

Lab Sample ID: 475-202-1

_					VT TE		
					ND or		
Analyte	Result	Qualifier	RL	Unit	TEF	TEQ	Method
Benzo[a]anthracene	0.020		0.012	mg/Kg	0.1	0.0020	8270E LL
Benzo[a]pyrene	0.020		0.012	mg/Kg	1	0.020	8270E LL
Benzo[b]fluoranthene	0.029		0.012	mg/Kg	0.1	0.0029	8270E LL
Benzo[k]fluoranthene	<0.012		0.012	mg/Kg	0.01	0.00	8270E LL
Chrysene	0.020		0.012	mg/Kg	0.001	0.000020	8270E LL
Dibenz[a,h]anthracene	<0.012		0.012	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	0.016		0.012	mg/Kg	0.1	0.0016	8270E LL

Client Sample ID: SB25-01 (12-18)

Lab Sample ID: 475-202-2

-					VT TE	F 13	
					ND or	ND or J = 0	
Analyte	Result	Qualifier	RL	Unit	TEF	TEQ	Method
Benzo[a]anthracene	0.018		0.0085	mg/Kg	0.1	0.0018	8270E LL
Benzo[a]pyrene	0.019		0.0085	mg/Kg	1	0.019	8270E LL
Benzo[b]fluoranthene	0.028		0.0085	mg/Kg	0.1	0.0028	8270E LL
Benzo[k]fluoranthene	0.0097		0.0085	mg/Kg	0.01	0.000097	8270E LL
Chrysene	0.021		0.0085	mg/Kg	0.001	0.000021	8270E LL
Dibenz[a,h]anthracene	<0.0085		0.0085	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	0.015		0.0085	mg/Kg	0.1	0.0015	8270E LL

Client Sample ID: SB25-02 (0-3)

Lab Sample ID: 475-202-3

				VT TE	F 13		
				ND or J = 0			
Analyte	Result Qual	lifier RL	Unit	TEF	TEQ	Method	
Benzo[a]anthracene	0.025	0.012	mg/Kg	0.1	0.0025	8270E LL	
Benzo[a]pyrene	0.022	0.012	mg/Kg	1	0.022	8270E LL	
Benzo[b]fluoranthene	0.031	0.012	mg/Kg	0.1	0.0031	8270E LL	
Benzo[k]fluoranthene	0.015	0.012	mg/Kg	0.01	0.00015	8270E LL	
Chrysene	0.026	0.012	mg/Kg	0.001	0.000026	8270E LL	
Dibenz[a,h]anthracene	<0.012	0.012	mg/Kg	1	0.00	8270E LL	
Indeno[1,2,3-cd]pyrene	0.020	0.012	mg/Kg	0.1	0.0020	8270E LL	

Client Sample ID: SB25-02 (12-18)

Lab Sample ID: 475-202-4

				VT TE		
				ND or		
Analyte	Result Qualifier	RL	Unit	TEF	TEQ	Method
Benzo[a]anthracene	0.017	0.0085	mg/Kg	0.1	0.0017	8270E LL
Benzo[a]pyrene	0.017	0.0085	mg/Kg	1	0.017	8270E LL
Benzo[b]fluoranthene	0.024	0.0085	mg/Kg	0.1	0.0024	8270E LL
Benzo[k]fluoranthene	0.0089	0.0085	mg/Kg	0.01	0.000089	8270E LL
Chrysene	0.020	0.0085	mg/Kg	0.001	0.000020	8270E LL
Dibenz[a,h]anthracene	<0.0085	0.0085	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	0.013	0.0085	mg/Kg	0.1	0.0013	8270E LL

TEF Reference:

Client: KAS Inc

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-03 (0-3)

Lab Sample ID: 475-202-5

_					VT TE	F 13	
					ND or	J = 0	
Analyte	Result	Qualifier	RL	Unit	TEF	TEQ	Method
Benzo[a]anthracene	<0.038		0.038	mg/Kg	0.1	0.00	8270E LL
Benzo[a]pyrene	0.051		0.038	mg/Kg	1	0.051	8270E LL
Benzo[b]fluoranthene	0.054		0.038	mg/Kg	0.1	0.0054	8270E LL
Benzo[k]fluoranthene	<0.038		0.038	mg/Kg	0.01	0.00	8270E LL
Chrysene	0.076		0.038	mg/Kg	0.001	0.000076	8270E LL
Dibenz[a,h]anthracene	<0.038		0.038	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	<0.038		0.038	mg/Kg	0.1	0.00	8270E LL

Toxicity Summary

Client Sample ID: SB25-03 (12-18)

Lab Sample ID: 475-202-6

Analyte	Result Qualifier			Unit	VT TEF 13			
			RL		ND or	J = 0		
		Qualifier			TEF	TEQ	Method	
Benzo[a]anthracene	0.0094		0.0083	mg/Kg	0.1	0.00094	8270E LL	
Benzo[a]pyrene	0.0086		0.0083	mg/Kg	1	0.0086	8270E LL	
Benzo[b]fluoranthene	0.014		0.0083	mg/Kg	0.1	0.0014	8270E LL	
Benzo[k]fluoranthene	<0.0083		0.0083	mg/Kg	0.01	0.00	8270E LL	
Chrysene	0.011		0.0083	mg/Kg	0.001	0.000011	8270E LL	
Dibenz[a,h]anthracene	<0.0083		0.0083	mg/Kg	1	0.00	8270E LL	
Indeno[1,2,3-cd]pyrene	<0.0083		0.0083	mg/Kg	0.1	0.00	8270E LL	

Client Sample ID: SB25-04 (0-3)

Lab Sample ID: 475-202-7

Analyte			Unit	VT TE	F 13	
				ND or J = 0		
	Result Qualifier	RL		TEF	TEQ	Method
Benzo[a]anthracene	0.37	0.050	mg/Kg	0.1	0.037	8270E LL
Benzo[a]pyrene	0.36	0.050	mg/Kg	1	0.36	8270E LL
Benzo[b]fluoranthene	0.56	0.050	mg/Kg	0.1	0.056	8270E LL
Benzo[k]fluoranthene	0.21	0.050	mg/Kg	0.01	0.0021	8270E LL
Chrysene	0.44	0.050	mg/Kg	0.001	0.00044	8270E LL
Dibenz[a,h]anthracene	<0.050	0.050	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	0.14	0.050	mg/Kg	0.1	0.014	8270E LL

Client Sample ID: SB25-04 (12-18)

Lab Sample ID: 475-202-8

-				VT TEF	13	
Analyte				ND or J	= 0	
	Result Qualifier	RL	Unit	TEF	TEQ	Method
Benzo[a]anthracene	<0.0092	0.0092	mg/Kg	0.1	0.00	8270E LL
Benzo[a]pyrene	<0.0092	0.0092	mg/Kg	1	0.00	8270E LL
Benzo[b]fluoranthene	<0.0092	0.0092	mg/Kg	0.1	0.00	8270E LL
Benzo[k]fluoranthene	<0.0092	0.0092	mg/Kg	0.01	0.00	8270E LL
Chrysene	<0.0092	0.0092	mg/Kg	0.001	0.00	8270E LL
Dibenz[a,h]anthracene	<0.0092	0.0092	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	<0.0092	0.0092	mg/Kg	0.1	0.00	8270E LL

TEF Reference:

Client: KAS Inc

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-05 (0-3)

Lab Sample ID: 475-202-9

_				VT TE	F 13		
Analyte	Result Qualifier			Unit	ND or .	J = 0	
		Qualifier	RL		TEF	TEQ	Method
Benzo[a]anthracene	0.054		0.038	mg/Kg	0.1	0.0054	8270E LL
Benzo[a]pyrene	0.083		0.038	mg/Kg	1	0.083	8270E LL
Benzo[b]fluoranthene	0.12		0.038	mg/Kg	0.1	0.012	8270E LL
Benzo[k]fluoranthene	<0.038		0.038	mg/Kg	0.01	0.00	8270E LL
Chrysene	0.11		0.038	mg/Kg	0.001	0.00011	8270E LL
Dibenz[a,h]anthracene	<0.038		0.038	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	<0.038		0.038	mg/Kg	0.1	0.00	8270E LL

Toxicity Summary

Client Sample ID: SB25-05 (12-18)

Lab Sample ID: 475-202-10

Analyte				VT TEF		
			Unit	ND or J		
	Result Qualifier	RL		TEF	TEQ	Method
Benzo[a]anthracene	<0.0076	0.0076	mg/Kg	0.1	0.00	8270E LL
Benzo[a]pyrene	<0.0076	0.0076	mg/Kg	1	0.00	8270E LL
Benzo[b]fluoranthene	<0.0076	0.0076	mg/Kg	0.1	0.00	8270E LL
Benzo[k]fluoranthene	<0.0076	0.0076	mg/Kg	0.01	0.00	8270E LL
Chrysene	<0.0076	0.0076	mg/Kg	0.001	0.00	8270E LL
Dibenz[a,h]anthracene	<0.0076	0.0076	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	<0.0076	0.0076	mg/Kg	0.1	0.00	8270E LL

Client Sample ID: SB25-06 (0-3)

Lab Sample ID: 475-202-11

-			alifier RL		VT TEI		
Analyte					ND or .		
	Result Qualifier	Qualifier		Unit	TEF	TEQ	Method
Benzo[a]anthracene	<0.046		0.046	mg/Kg	0.1	0.00	8270E LL
Benzo[a]pyrene	0.088		0.046	mg/Kg	1	0.088	8270E LL
Benzo[b]fluoranthene	0.11		0.046	mg/Kg	0.1	0.011	8270E LL
Benzo[k]fluoranthene	<0.046		0.046	mg/Kg	0.01	0.00	8270E LL
Chrysene	0.11		0.046	mg/Kg	0.001	0.00011	8270E LL
Dibenz[a,h]anthracene	<0.046		0.046	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	<0.046		0.046	mg/Kg	0.1	0.00	8270E LL

Client Sample ID: SB25-06 (12-18)

Lab Sample ID: 475-202-12

-			Unit	VT TEF	13	
Analyte				ND or J = 0		
	Result Qualifier	RL		TEF	TEQ	Method
Benzo[a]anthracene	<0.043	0.043	mg/Kg	0.1	0.00	8270E LL
Benzo[a]pyrene	<0.043	0.043	mg/Kg	1	0.00	8270E LL
Benzo[b]fluoranthene	<0.043	0.043	mg/Kg	0.1	0.00	8270E LL
Benzo[k]fluoranthene	<0.043	0.043	mg/Kg	0.01	0.00	8270E LL
Chrysene	<0.043	0.043	mg/Kg	0.001	0.00	8270E LL
Dibenz[a,h]anthracene	<0.043	0.043	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	<0.043	0.043	mg/Kg	0.1	0.00	8270E LL

TEF Reference:

Toxicity Summary

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Client Sample ID: SB25-07 (0-3)

Lab Sample ID: 475-202-13

Analyte	Result Qualifier			Unit	VT TEF 13 ND or J = 0			
		Qualifier	RL		TEF	TEQ	Method	
Benzo[a]anthracene	0.043		0.041	mg/Kg	0.1	0.0043	8270E LL	
Benzo[a]pyrene	0.047		0.041	mg/Kg	1	0.047	8270E LL	
Benzo[b]fluoranthene	0.067		0.041	mg/Kg	0.1	0.0067	8270E LL	
Benzo[k]fluoranthene	<0.041		0.041	mg/Kg	0.01	0.00	8270E LL	
Chrysene	0.043		0.041	mg/Kg	0.001	0.000043	8270E LL	
Dibenz[a,h]anthracene	<0.041		0.041	mg/Kg	1	0.00	8270E LL	
Indeno[1,2,3-cd]pyrene	<0.041		0.041	mg/Kg	0.1	0.00	8270E LL	

Client Sample ID: SB25-07 (12-18)

Lab Sample ID: 475-202-14

Analyte	Result Qualifier			VT TEF 13			
			RL	Unit	ND or J	= 0	
		ualifier			TEF	TEQ	Method
Benzo[a]anthracene	0.047		.045	mg/Kg	0.1	0.0047	8270E LL
Benzo[a]pyrene	0.047	0	.045	mg/Kg	1	0.047	8270E LL
Benzo[b]fluoranthene	0.073	0	.045	mg/Kg	0.1	0.0073	8270E LL
Benzo[k]fluoranthene	<0.045	0	.045	mg/Kg	0.01	0.00	8270E LL
Chrysene	<0.045	0	.045	mg/Kg	0.001	0.00	8270E LL
Dibenz[a,h]anthracene	< 0.045	0	.045	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	<0.045	0	.045	mg/Kg	0.1	0.00	8270E LL

Client Sample ID: SB25-08 (0-3)

Lab Sample ID: 475-202-15

Analyte	Result Qualifier		Qualifier RL	Unit	VT TE	F 13	
					ND or J = 0		
		Qualifier			TEF	TEQ	Method
Benzo[a]anthracene	0.013		0.0091	mg/Kg	0.1	0.0013	8270E LL
Benzo[a]pyrene	0.014		0.0091	mg/Kg	1	0.014	8270E LL
Benzo[b]fluoranthene	0.027		0.0091	mg/Kg	0.1	0.0027	8270E LL
Benzo[k]fluoranthene	<0.0091		0.0091	mg/Kg	0.01	0.00	8270E LL
Chrysene	0.016		0.0091	mg/Kg	0.001	0.000016	8270E LL
Dibenz[a,h]anthracene	<0.0091		0.0091	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	<0.0091		0.0091	mg/Kg	0.1	0.00	8270E LL

Client Sample ID: SB25-08 (12-18)

Lab Sample ID: 475-202-16

-		RL	Unit	VT TEF	13	
Analyte				ND or J		
	Result Qualifier			TEF	TEQ	Method
Benzo[a]anthracene	<0.037	0.037	mg/Kg	0.1	0.00	8270E LL
Benzo[a]pyrene	<0.037	0.037	mg/Kg	1	0.00	8270E LL
Benzo[b]fluoranthene	<0.037	0.037	mg/Kg	0.1	0.00	8270E LL
Benzo[k]fluoranthene	<0.037	0.037	mg/Kg	0.01	0.00	8270E LL
Chrysene	<0.037	0.037	mg/Kg	0.001	0.00	8270E LL
Dibenz[a,h]anthracene	<0.037	0.037	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	<0.037	0.037	mg/Kg	0.1	0.00	8270E LL

TEF Reference:

Toxicity Summary

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Client Sample ID: Dup-2

Lab Sample ID: 475-202-21

Analyte			L Unit	VT TEF 13 ND or J = 0		
	Result Qualifier	fier RL		TEF	TEQ	Method
Benzo[a]anthracene	0.020	0.0086	mg/Kg	0.1	0.0020	8270E LL
Benzo[a]pyrene	0.020	0.0086	mg/Kg	1	0.020	8270E LL
Benzo[b]fluoranthene	0.035	0.0086	mg/Kg	0.1	0.0035	8270E LL
Benzo[k]fluoranthene	0.012	0.0086	mg/Kg	0.01	0.00012	8270E LL
Chrysene	0.025	0.0086	mg/Kg	0.001	0.000025	8270E LL
Dibenz[a,h]anthracene	<0.0086	0.0086	mg/Kg	1	0.00	8270E LL
Indeno[1,2,3-cd]pyrene	<0.0086	0.0086	mg/Kg	0.1	0.00	8270E LL

TEF Reference:

VT TEF 13 = Vermont TEF 8270 November 2013, CA OEHHA 2015

Eurofins Northeast Concord

2

__

7

}

QC Sample Results

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Method: 8270E LL - Semivolatile Organic Compounds by GC/MS - Low Level

Lab Sample ID: MB 475-795/1-A

Matrix: Solid

Analysis Batch: 870

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 795

Analysis Batch: 870							Prep Bate	ch: 795
-	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
2-Methylnaphthalene	< 0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Acenaphthene	< 0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Acenaphthylene	<0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Anthracene	< 0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Benzo[a]anthracene	< 0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Benzo[a]pyrene	<0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Benzo[b]fluoranthene	< 0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Benzo[k]fluoranthene	< 0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Benzo[g,h,i]perylene	<0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Chrysene	< 0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Dibenz[a,h]anthracene	< 0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Fluorene	<0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Fluoranthene	< 0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Indeno[1,2,3-cd]pyrene	< 0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Naphthalene	<0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Phenanthrene	< 0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
Pyrene	<0.0070		0.0070	mg/Kg		03/04/25 08:25	03/04/25 14:37	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

30 - 130

Lab Sample ID: LCS 475-795/2-A

Matrix: Solid

Surrogate

p-Terphenyl-d14 (Surr)

p-Terphenyl-d14 (Surr)

Analysis Batch: 870

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

p Type: Total/NA Prep Batch: 795

Analysis Batch: 870							Prep Bate	cn: /95
	Spike		LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	_ D	%Rec	Limits	
1-Methylnaphthalene	1.67	1.34		mg/Kg		80	40 - 140	
2-Methylnaphthalene	1.68	1.55		mg/Kg		92	40 - 140	
Acenaphthene	1.67	1.47		mg/Kg		88	40 - 140	
Acenaphthylene	1.67	1.40		mg/Kg		84	40 - 140	
Anthracene	1.67	1.46		mg/Kg		87	40 - 140	
Benzo[a]anthracene	1.68	1.48		mg/Kg		88	40 - 140	
Benzo[a]pyrene	1.68	1.57		mg/Kg		93	40 - 140	
Benzo[b]fluoranthene	1.68	1.53		mg/Kg		91	40 - 140	
Benzo[k]fluoranthene	1.68	1.52		mg/Kg		91	40 - 140	
Benzo[g,h,i]perylene	1.68	1.41		mg/Kg		84	40 - 140	
Chrysene	1.67	1.49		mg/Kg		89	40 - 140	
Dibenz[a,h]anthracene	1.67	1.55		mg/Kg		93	40 - 140	
Fluorene	1.68	1.49		mg/Kg		89	40 - 140	
Fluoranthene	1.68	1.43		mg/Kg		85	40 - 140	
Indeno[1,2,3-cd]pyrene	1.67	1.57		mg/Kg		94	40 - 140	
Naphthalene	1.68	1.37		mg/Kg		82	40 - 140	
Phenanthrene	1.67	1.42		mg/Kg		85	40 - 140	
Pyrene	1.68	1.48		mg/Kg		88	40 - 140	
L	CS LCS							

Eurofins Northeast Concord

Limits

30 - 130

%Recovery Qualifier

71

3

3

Project/Site: Old White Meeting House | 510210643

Method: 8270E LL - Semivolatile Organic Compounds by GC/MS - Low Level

Lab Sample ID: LCSD 475-795/3-A

Matrix: Solid

Analysis Batch: 870

Client: KAS Inc

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Prep Batch: 795

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1-Methylnaphthalene	1.67	1.31		mg/Kg		79	40 - 140	2	30
2-Methylnaphthalene	1.68	1.52		mg/Kg		91	40 - 140	2	30
Acenaphthene	1.67	1.44		mg/Kg		86	40 - 140	2	30
Acenaphthylene	1.67	1.39		mg/Kg		83	40 - 140	1	30
Anthracene	1.67	1.43		mg/Kg		86	40 - 140	2	30
Benzo[a]anthracene	1.68	1.46		mg/Kg		87	40 - 140	1	30
Benzo[a]pyrene	1.68	1.54		mg/Kg		91	40 - 140	2	30
Benzo[b]fluoranthene	1.68	1.51		mg/Kg		90	40 - 140	1	30
Benzo[k]fluoranthene	1.68	1.51		mg/Kg		90	40 - 140	0	30
Benzo[g,h,i]perylene	1.68	1.40		mg/Kg		83	40 - 140	1	30
Chrysene	1.67	1.48		mg/Kg		88	40 - 140	1	30
Dibenz[a,h]anthracene	1.67	1.55		mg/Kg		93	40 - 140	0	30
Fluorene	1.68	1.48		mg/Kg		88	40 - 140	0	30
Fluoranthene	1.68	1.43		mg/Kg		85	40 - 140	0	30
Indeno[1,2,3-cd]pyrene	1.67	1.55		mg/Kg		93	40 - 140	1	30
Naphthalene	1.68	1.35		mg/Kg		81	40 - 140	2	30
Phenanthrene	1.67	1.42		mg/Kg		85	40 - 140	0	30
Pyrene	1.68	1.46		mg/Kg		87	40 - 140	2	30

LCSD LCSD

мв мв

Surrogate %Recovery Qualifier Limits p-Terphenyl-d14 (Surr) 30 - 130

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 475-822/1-A

Matrix: Solid

Analysis Batch: 948

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 822

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.50		0.50	mg/Kg		03/04/25 15:46	03/06/25 18:27	25
Lead	<0.50		0.50	mg/Kg		03/04/25 15:46	03/06/25 18:27	25

Lab Sample ID: LCS 475-822/2-A

Matrix: Solid

Analysis Batch: 948

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 822

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic		39.8	38.9		mg/Kg		98	80 - 120	
Lead		39.8	37.4		mg/Kg		94	80 - 120	

Lab Sample ID: LCSSRM 475-822/3-A

Matrix: Solid

Analysis Batch: 948

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 822

•	Spike	LCSSRM	LCSSRM				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	242	231		mg/Kg		95.6	81.8 - 118.	
							6	
Lead	194	184		mg/Kg		94.8	82.0 - 118.	
							6	

Prep Type: Total/NA

Prep Batch: 914

Prep Type: SPLP East

Prep Batch: 914

Client Sample ID: Dup-1

Prep Type: SPLP East

Client Sample ID: Lab Control Sample

QC Sample Results

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 475-202-10 MS Client Sample ID: SB25-05 (12-18) **Prep Type: Total/NA**

Matrix: Solid

Analysis Ratch: 949

Analysis Batch: 948									Pre	p Batch: 822	-
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Arsenic	2.0		80.2	79.4		mg/Kg	<u></u>	97	75 - 125		
Lead	11		80.2	88.6		mg/Kg	☼	97	75 - 125		

Lab Sample ID: 475-202-10 MSD Client Sample ID: SB25-05 (12-18)

Matrix: Solid

Analysis Batch: 948									Pre	b Batch	n: 822
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	2.0		80.3	78.3		mg/Kg	<u></u>	95	75 - 125	1	20
Lead	11		80.3	79.0		mg/Kg	₩	85	75 - 125	12	20

Lab Sample ID: MB 475-880/1-B **Client Sample ID: Method Blank Prep Type: SPLP East**

Matrix: Solid

Analysis Batch: 948

MB MB

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.010	0.010	mg/L		03/06/25 08:21	03/06/25 21:30	10
Lead	<0.010	0.010	mg/L		03/06/25 08:21	03/06/25 21:30	10

Lab Sample ID: LCS 475-880/2-B

Matrix: Solid

Analysis Batch: 948							Prep Batch: 914
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	1.00	0.981		mg/L	_	98	80 - 120
Lead	1.00	0.979		mg/L		98	80 - 120

Client Sample ID: Dup-1 Lab Sample ID: 475-202-20 MS **Matrix: Solid Prep Type: SPLP East**

Analysis Batch: 948

•	Sample	Sample	Spike	MS	MS				%Rec	'	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Arsenic	<0.010		1.00	0.998		mg/L		99	75 - 125		
Lead	0.47		1.00	1.50		mg/L		102	75 - 125		

Lab Sample ID: 475-202-20 MSD

Matrix: Solid

Analysis Batch: 948									Pre	o Batcr	1: 914
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	<0.010		1.00	0.990		mg/L		98	75 - 125	1	20
Lead	0.47		1.00	1.67		mg/L		120	75 - 125	11	20

Accreditation/Certification and Definitions Summary

Client: KAS Inc Job ID: 475-202-1

Project/Site: Old White Meeting House | 510210643

Laboratory: Eurofins Northeast Concord

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
New Hampshire	NE	LAP	1012	01-20-26
The fellowing a small do				
the agency does not	•	rt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for wh
• .	•	rt, but the laboratory is r Matrix	not certified by the governing authority. Analyte	This list may include analytes for wh

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
1C	Result is from the primary column on a dual-column method.
2C	Result is from the confirmation column on a dual-column method.
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
MRL	Method Reporting Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
SDL	Sample Detection Limit
SDL	Sample Detection Limit
SDL	Sample Detection Limit
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Eurofins Northeast Concord

4

5

6

7

Page _____ of _______

CHAIN-OF-CUSTODY RECORD

B

				_		_
OLD FI	ELDS RE	QUIRED. P	LEASE (CIRCLE	REQUESTED	ANALYSIS.

		VOC		S	VOC		rale INORGANIC					Mi	CRO	Μet	TALS	OTHER		200	
SAMPLING DATE / TIME *If Composite, Indicate Both Start & Finish Date / Time	MATRIX (SEE BELOW) GRAB/*COMPOSITE	224.2 524.2 MTBE ONLY 2260 624 VTICS 1, 4 DIOXANE	3015 GRO MAVPH	ABN CPAH) EDB DBCP	3015 DRO MAEPH PEST 608 PCB 608 PEST 8081 PCB 8082	64	≲	=	SH T. RES. CHLORINE T. RES. CHLORINE T. ALK.		9	TOTAL COLIFORM E. COLI	ENTEROCOCCI HETEROTROPHIC PLATE COUNT	DISSOLVED METALS (LIST BELOW)	TOTAL METALS (LIST BELOW)		# OF CONTAINERS	NOTES MEOH VIAL #	
2/27/25 1430	59			X											X		2		
1436																	l		
1448																	2		
1456																	2		
1303																	2		
1306																	2		
1315																	1		
1318																	2		
1327																			
	KING WATER;			4											Ā				
	#IF COMPOSITE, INDICATE BOTH START & FINISH DATE / TIME 2/27/25 1430 1436 1448 1456 1303 1306 1315 1318 1327	*If Composite, Indicate Both Start & Finish Date / Time 2/27/25 1430 5 9 1436 1448 1456 1303 1306 1315 1318 1327 1330 5 9 5 SW-Surface Water; DW-Drinking Water;	SAMPLING PATE / TIME *IF COMPOSITE, INDICATE BOTH START & FINISH DATE / TIME *IF COMPOSITE *IF COM	*IF COMPOSITE, INDICATE BOTH START & FINISH DATE / TIME 2/27/25 1430 5 9 1436 14456 1303 1306 1315 1318 1327 1330 SW-SURFACE WATER; DW-DRINKING WATER;	SAMPLING PATE / TIME START & FINISH DATE / TIME DATE /	SAMPLING PATE STATE OF THE OWN WAFFER SW-SURFACE MATER; DW-DRINKING WATER; SW-SURFACE MATER; DW-DRINKING WATER; SW-SURFACE MATER; DW-DRINKING WATER; SW-SURFACE MATER; DW-DRINKING WATER;	SAMPLING DATE / TIME NOT STATE OF THE 1664 TPH 1	SAMPLING DATE / TIME WITH PROPER STATE OF DRINKING WATER: A DIOXAM	SAMPLING DATE/TIME *IF COMPOSITE, INDICATE BOTH START & FINISH DATE/TIME DAT	SAMPLING DATE / TIME STATE STATE	SAMPLING DATE / TIME **IF COMPOSITE, INDICATE BOTH STATE / STA	SAPPRING SAPPRING	SAMPLING DATE / LIME *IF COMPOSITE. INDICATE BOTH STATT A BING BOTH DATE / TIME *B COMPOSITE BOTH STATT & SING BOTH STATT & SING BOTH STATT & SING BOTH DATE / TIME *B COMPOSITE BOTH STATT & SING BOTH STATT &	SAMPLING DATE / TIME * COMPOSITE SALA FINISH SALA SALA	SATISTIC ON PERSON PRINCING PARTY (SEE BELOW) SATISTICS OF PERSON PARTY (SATISTICS	SAMPLING DATE / TIME *IF COMPOSITE. INDICATE BOTH STATE AT THE GOAT STATE HERB DATE / TIME *IF COMPOSITE. INDICATE BOTH STATE AT THE GOAT STATE HERB DATE / TIME *IF COMPOSITE. INDICATE BOTH STATE AT THE GOAT STATE HERB DATE / TIME *IF COMPOSITE. INDICATE BOTH STATE AT THE GOAT	SAN-Surriace Mater: DM-Drinking Mater: SM-Surriace Mater Mater: DM-Drinking Mater: SM-Surriace Mater: DM-Drinking Materiace Mater: SM-Surriace Mater: DM-Drinking Materiace Materiace Materiace Materiace Materiace Materiace Materiace Materiace Materia	SAMPLING DATE/TIME #IFCOMPOSITE. INDICATE BOTH START & FINISH DATE/TIME DATE	

QA/QC REPORTING

PROJECT MANAGER: Jevery Roberts
COMPANY: KAS Inc.
ADDRESS: 589 Avenue D Ste. 10
CITY: WILLISTON STATE: VT ZIP: 05495
PHONE: (802) 383 0486 EXT : 103
E-Mail: Deveny R@ Kas-consulting. com
SITE NAME: Old White Meeting House
PROJECT #: 5102106413
STATE: NH MA ME 🗥 OTHER:
REGULATORY PROGRAM: NPDES: RGP POTW STORMWATER OR GWP, OIL FUND, BROWNFIELD OR OTHER:
QUOTE #: PO #:

ZIP: 05495 EXT.: 103	RELINQUISHED BY:	PRELIMS. YES OR NO ELECTRONIC OPTIONS PDF EXCEL EQUIS OTHER Cameron 2124) 25 Date: Time: 24-25 141.00 Date: Time:	24hr* 48hr* 3-4 Days* 5 Day 7 Day 10 Day *Pre-approval Required RECEIVED BY:	OTHER METALS: PR, AS SAMPLES FIELD FILTERED? YES NO NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT) Please Contact Jeverny Roberts once preliminary are in to determine who Samples to run for TCLP analysis SITE HISTORY: SUSPECTED CONTAMINATION: Pb, As
51 Antrim Avenue Co	RELINQUISHED BY:	DATE: TIME:	RECEIVED BY:	FIELD READINGS: TERNANALYTICAL.COM WWW.EasternAnalyTical.com
o, , , wellac co	1.00.00.			

REPORTING OPTIONS

TURN AROUND TIME

METALS: 8 RCRA 13 PP FE, MN PB, CU OTHER METALS: PB, AS
SAMPLES FIELD FILTERED? YES NO
Notes: (ie: Special Detection Limits, Billing Info, If Different)
Please Contact Jeremy
Roberts once preliminary
are in to determine which
Samples to run for
TCLP analysis
SUSPECTED CONTAMINATION: Pb, As
SUSPECIED CONTAMINATION: 1 D , 173
FIELD READINGS:

3/27/2025 (Rev. 1)

Page 26 of 28

eurofins

Environment Testing Eastern Analytical

	7 0	4 0	9	6
--	-----	-----	---	----------

Page	2	of	3
1 480		٠.	

CHAIN-OF-CUSTODY RECORD

FOR LAB	USE	Only	

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

				- I I											-									_			_			<u> </u>
						VO	C			SV	\mathbf{O}	_	TCL	P		10	RGA	IN	_		_	CRO	E	TALS	100000	THE	R			125
	SAMPLING DATE / TIM *If COMPOSI	1F	(SEE BELOW)	GRAB/*COMPOSITE		624 VTICs		MAVPH	DB	LI LZ	PCB 608	PCB 8082	TCLP 1311 ABN METALS)D	F 504	J TN S	ES. CHLORINE T. AIK	OLS TOC DOC	TOTAL SULFIDE	DE REACTIVE SULFIDE	F. Cou	ENTEROCOCCI HETEROTROPHIC PLATE COUNT	DISSOLVED METALS (LIST BELOW)	TOTAL METALS (LIST BELOW)	2. PB, AS			ERS		3/27/2025 (F
SAMPLE I.D.	Indicate Bo Start & Fini Date /Time	ISH E	MATRIX (SEE	GRAB/*	524.2 524.2 MTBE 0	8260 624 1, 4 DIOXANE	1700	8015 GRO		IPH8100	PEST 608	PEST 8081 OII & GREASE	TCLP 1311	800 CB(BR CI NO, NO	TKN NH T PHOS	pH T. P	COD PHEN	Total Cyanide	REACTIVE CYANIDE FLASHPOINT IGN	TOTAL COLIFORI FECAL COLIFORI	ENTEROCOCCI HETEROTROPHIC	DISSOLVED ME	TOTAL METALS	SPLP.			# OF CONTAINERS	Notes MeOH Vial #	
5825-06 (0-3)	2/27/25 14	12	S	G					X															X				1		
5825-06 (12-18)	1 141	6	İ)																								Ì		
SB25-07 (0-3)	135	71																										i		
3B25-07 (12-18)	140	00																										2		
5B25-08 (0-3)	133	38							4															7				1		
SB25-08 (12-18)	134	41)	X															X				1		
5.824-0113	125	54																							X			1		
5B24 - 03R	142	22																										1		of 28
5824 - 04R	144	16																										i		= 27
MATRIX: A-AIR; S-SOIL; GW-GROUND WATER WW-WASTE WATER	; SW-SURFACE WATER; D	146 OW-Drinkii	NG W	ATER;																					4			ì		Page
Preservative: H-HCL; N-HNO ₃ ; S-H ₂ SO ₄ ; N							_														L					Щ.				
PROJECT MANAGER: Devery	Roberts						QA	\/QC	REP	ORTI	NG	F	REPOR Prelim						n Ai 1hr*		8hr*	IE				RCRA			E, Mn PB, C	U
COMPANY: KAS Inc.	2					-		Α	В	C			1 110011		011	.,,		Z ^c		Days			OTHER METALS: PB, AS					_		
ADDRESS: 589 Avenue			ID.	۸٩	744	_		М	A M	CP		E	LECTR	ONIC	Орті	ONS		5	Day	,			SAM	IPLES	FIELD	FILTER	RED?		YES NO	0
PHONE: (802) = - 38						3	Tra	/	3. (0 %			PDF		EXCEL			,	'	Day	24/		Note	S: (IE: S	SPECIAL I	DETECTION	LIMITS,	BILLING	INFO, IF DIFFERENT	<u>r)</u>
E-MAIL: Deremy R@ KA	S- CONSULT	inq					1	iir	~	No			OTHER	Equ				*Pre	-appr	,	equire	ed							eremy Ro	bert3
SITE NAME: Old white 1	Meeting Hou	rses						1	\mathcal{I}								ŀ												in to	
PROJECT #: 510210643						-	AMPL	ER(S):	(CKC	aid	\mathcal{L}	am	en	00		-												5amp	
STATE: NH MA ME REGULATORY PROGRAM: NPDES: RGP	_					_	las	ng C	Am		32	21	18/3 E:	5	100	2	<	CEIVED	hyld	ell	1		to	Y	UN	for	TO	LF	analy	SiS
GWP, OIL FUND, BROWNE							Reu1	NQUI	SHED	BY:	7	DAT S	E: የ - 2 !	=	TIME:	.00		CEIVED	BY:)	1	7			U						
Quoте #:	P0 #:					_			SHED		۷.	DAT	E:		TIME:		RE	CEIVED	Вү:		()			HISTOR		NATION:	75	ς, Δ	15	_
• • • • • • • • • • • • • • • • • • •							RELII	NOUI	SHED	By:		DAT	E:		TIME:		RE	CEIVED	By:					READ			, , ,			_

eurofins

- N W 4 W 6 P 8	
-----------------	--

Page	3	of	3	
0-				-

CHAIN-OF-CUSTODY RECORD

For	Lab	Use	ONLY		
1					

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

		В	JLD	LIELD		-	KED					CLE	IVE																	<u> </u>
				V	OC	1		S	<u> </u>	C		TCLP		IN	101	RGA	INA	CS		Mi	CRO	ME	TALS	C	JΤ	HER			Value 125	7,
Sample I.D.	SAMPLING DATE / TIME *IF COMPOSITE, INDICATE BOTH START & FINISH DATE / TIME	MATRIX (SEE BELOW)	GRAB/*COMPOSITE	524.2 524.2 MTBE ONLY 8260 624 VTICS	1, 4 DIOAANE 8021	8015 GRO MAVPH	A ABN PATH EDB DBCP	TPH8100 LI L2	8015 DRO MAEPH	PEST 608 PCB 608 PEST 8081 PCB 8082	OIL & GREASE 1664 TPH 1664	TCLP 1311 ABN METALS VOC PEST HERB	80D CBOD TS TSS TDS	BR CI F 504 NO NO NO3NO2	TKN NH3 TN T PHOS 0 PHOS	PH T. RES. CHLORINE	COD PHENOLS TOC DOC	TOTAL CYANIDE TOTAL SULFIDE	REACTIVE CYANIDE REACTIVE SULFIDE	TOTAL COLIFORM E. COLI	ENTEROCOCCI HETEROTROPHIC PLATE COUNT	DISSOLVED METALS (LIST BELOW)	TOTAL METALS (LIST BELOW)				# or fourtinger		Notes OH Vial #	206/26/8
Dup- Q	2137125 1436	3	0			-					-	-								+								+		-
																						-					-	_		
																											+	+		
																					ľ									α
																											1	1		3 of 28
																			-							_	+	+		28 P
MATRIX: A-AIR; S-SOIL; GW-GROUND WATE WW-WASTE WATER PRESERVATIVE: H-HCL; N-HNO ₃ ; S-H ₂ SO ₄ ;		KING W	VATER;] a
PROJECT MANAGER: <u>Jeven</u> COMPANY: <u>KAS NAC</u> ADDRESS: <u>\$89</u> AVEN	y Roberts				-	QA/QC REPORTING A B C			Description No.					48hr*	METALS: 8 RCRA 13 PP FE, MN PB, CI OTHER METALS: PB, AS					-										
(ITY: <u>(1111/3)</u>	STATE:	F		103	- [TEMP.	MA N	6	_°C		PDF EXCEL EQUIS								SAMPLES FIELD FILTERED? YES NO NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT) Please Contact Deveny Rober) sbert						
F-MAIL: Jerewy R @ SITE NAME: 512 White PROJECT #: 5102100	Meeting (+	004	<u>><</u>							19		OTHER _		Y C	n	,						0	nce	pr to	elin	nina: cterr	wir	(es.	which	e
STATE: NH MA ME (REGULATORY PROGRAM: NPDES: RGF	POTW STORMWATER OR				RE	ent ELIMÓ	S):	D BY	1:		DATE:	8)25	5)	00.	2	S	LL ECEIVED	BY:	le le	2						ء د داروج		7	or	
GWP, OIL FUND, BROWN QUOTE #:	PO #:				·	$\overline{\mathcal{L}}$	ZOLY UISHE	Will	Щ_		- Z Date:	2.6	->_	14 Time:	:00		ECEIVED	-	6		7	SITE	Histor	RY:		n:F		A:	3	-
• aurofins					RE	LINQ	UISHE	D BY	/:		DATE:	:		TIME:		Ri	ECEIVED	Вү:			_									-

eurofins

Appendix E

Data Validation Report

Old Meeting House 320 US-2 South Hero, Vermont 05486

VT DEC SMS #2024-5472 KAS #510210643

DATA VALIDATION REPORT

April 4, 2025

Prepared for:

Northwest Regional Planning Commission 75 Fairfield Street St Albans, Vermont 05478

589 Avenue D, Suite 10 PO Box 787 Williston, VT 05495

www.kas-consulting.com

802 383.0486 p 802 383.0490 f

Table of Contents

1.0 Project Descripti	on Summary	1
2.0 Sampling Proced	ıres and Protocols	1
3.0 Blanks		1
4.0 MS/MSD and LCS	/LCSD	2
5.0 Relative Percent	Difference	2
	ery	
-	viations	
·		

Appendices

Appendix A Laboratory Validation Checklists

Soil

Appendix B RPD Calculators

1.0 Project Description Summary

This data validation report applies to soil samples collected at the Old Meeting House located at 320 US Route 2, South Hero, Vermont ("Site"). Samples were collected using the scope of work outlined in the approved Work Plan & Site-Specific Quality Assurance Project Plan (SSQAPP) Addendum (EPA RFA 23132), dated January 24, 2025, revised February 5, 2025 for the performance of sampling and analysis. Sampling occurred on February 27, 2025. Field quality control samples included duplicates. Laboratory analysis of samples was performed by Eastern Analytical, Inc. (EAI) of Concord, NH. Please refer to the SSQAPP Addendum for additional details concerning the Site background, work scope, and standard operating procedures. The following specific data was validated:

- Sixteen (16) shallow soil samples analyzed for Arsenic and Lead via EPA Method 6020B and polycyclic aromatic hydrocarbons (PAHs) via EPA Method 8270E; and,
- Three (3) shallow soil samples analyzed for Synthetic Precipitation Leaching Procedure (SPLP) for Arsenic and Lead via EPA Method 6020B.

The following is an overview of the various methods by which quality of laboratory data is assessed. These parameters are used to ensure that acceptable criteria of accuracy and precision are met, to ensure that any bias in reporting is below acceptance criteria, and that proper calibration of equipment has been performed.

2.0 Sampling Procedures and Protocols

Sampling was performed in accordance with the procedures specified in the SSQAPP Addendum. Field data sheets and field notebooks were reviewed to ensure proper documentation of the sampling conditions, and entries were made with permanent ink. Entries included the sampling location, time, and date. All equipment used was recorded on the daily work reports. The chain-of-custody forms were reviewed to ensure the sample identification, number, type, and size of the sample containers, preservatives used, and signatures were properly recorded, and were in accordance with the requirements of the SSQAPP. The laboratory was able to analyze the samples in accordance with the standard procedures. The samples arrived at the laboratories within the SSQAPP specified acceptable range, and samples were analyzed within EPA holding times.

3.0 Blanks

Blanks measure the influence of outside factors on reported results: trip blanks and method blanks are used to target specific factors in the sampling process. Trip blanks are to ensure that no outside contamination resulted during transit to the laboratory. Method blanks are laboratory prepared blanks of pure water or sand which are analyzed with the batch of samples to ensure that there is no contamination resulting from the laboratory handling of samples or the analysis procedures.

1

Method blanks were prepared by the laboratory for all analyses performed and reported no detection of compounds, indicating that there was no contamination of samples while at the laboratory.

4.0 MS/MSD and LCS/LCSD

Matrix spike/matrix spike duplicate (MS/MSD) and laboratory control samples/laboratory control sample duplicate (LCS/LCSD) analyses measure accuracy to ensure that reported results are close to the actual concentrations of the tested compounds within the sample. To ensure that the matrix of the sample (i.e. soil) is not interfering with results, a matrix spike analysis is conducted. Laboratory instruments are calibrated using solutions of a known chemical makeup and concentration, to test the effectiveness of the particular analytical method on the parent material, a known concentration of the contaminant of interest (or spike) is added to the matrix and analyzed. The LCS is similar in that a known concentration of a chemical is added to a solution, but in this instance, it is a sample prepared in the laboratory of pure water. This is to test the effectiveness of the analytical method independent of the matrix.

In all MS analysis performed, laboratory acceptance criteria were met, indicating that the reported contaminant concentrations were likely close to the actual concentrations present in the samples. The data should be accepted based on the lack of detection in any of the media samples.

5.0 Relative Percent Difference

One way in which quality of data is measurable is by calculating the relative percent difference (RPD) between the sample and duplicate. RPD values assess the precision of reported values, which is indicated by a high degree of reproducibility of results. The RPD is defined as 100 times the difference between the sample result and the duplicate result, divided by the mean of the sample and duplicate results. RPD values are also calculated to assess the difference between the MS and MSD as well as the LCS and LCSD.

For all analyses, RPD values were below the QAPP specified limits of 50% for solid samples.

6.0 Surrogate Recovery

Surrogate recovery is measured when a compound of known quantity and concentration is added to the sample and then analyzed using the same standard method. The percentage of the compound recovered is reported. This is a way to test for bias in the analysis. If there is a low percent recovery concentration it can be deduced that other tested compounds may also be reported low, and conversely the same is true if the percent recovery is high.

Surrogate recovery was performed for all the PAH analysis. All surrogate recovery percentages were within the specified ranges, indicating accuracy in that the reported results are likely representative of the actual concentrations contained within the samples.

7.0 Reporting Limits

Laboratory reporting limits were compared with the applicable Form K criteria for each tested compound to ensure that laboratory analysis is relevant to the concentrations at which contaminants are of concern. Laboratory reporting limits were met for all samples analyzed.

2

8.0 Completeness/Deviations

The data validated in this report pertains to section 2.2 *Shallow Soil Assessment* of the SSQAPP Addendum dated January 24, 2025, revised February 5, 2025. The samples were collected following procedures outlined in the SSQAPP Addendum. No deviations from the approved work scope were noted except for the following:

- The laboratory did not analyze any soil samples for toxicity characteristic using the toxicity characteristic leaching procedure (TCLP), as instructed on the chain of custody; and,
- Only one duplicate sample was collected for PAHs, lead and arsenic analysis as opposed to the two duplicates called out in the SSQAPP. This occurred due to a field error.

These deviations were determined to not have had an effect on the data collection and analysis completed.

9.0 Conclusion

Based on the findings presented above, data pertaining to the performance of sampling and analysis should be accepted.

3

Leah Amerine

Quality Assurance Officer

Appendix A

Laboratory Data Validation Checklists Soil: Metals – Arsenic and Lead

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-01 (0-</u>	<u>3") </u>
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	rn Analytical, Inc	<u>.</u> EPA Analytical Me	thod: <u>6020</u>)B
Were any abno	rmalities presented wit	hin Lab cover lett	ter? 🗆 Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Soil		_Extraction Date (if	applicable): <u>N</u>	/A
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025	
Was analysis co	mpleted within EPA Mo	ethod specified h	nolding time?		
☑ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	xs?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for applic	able samples:
RPD = 1	100% x (sample - duplic	ate)			
	(sample + duplicate)/2	2			
Is RPD within C	APP specified limits (<5	50% soil, ≤30% G	W, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
Were laborator	y surrogate recovery co	oncentrations acc	eptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	y matrix spike, laborato	ory control sample	es, and their respect	ive duplicates a	acceptable?
☑ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the lin	nits specified in F	orm K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
Are laboratory	detection limits below t	the applicable sta	andards referenced	in the QAPP?	
☐ Yes	□ No	☑ N/A			
If no, explain	:				

Site Name:	Old White Meeting H	ouse	Sample Identificati	on: <u>SB25-0</u>	1 (12-18")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/East</u> e	ern Analytical, Inc	<u>c. </u> EPA Analytical Me [.]	thod:	5020B
Were any abno	rmalities presented wi	thin Lab cover let	ter? 🗆 Yes	☑No)
If yes, explair	n:				
Sample Matrix:	Soil		Extraction Date (if	applicable)	: <u>N/A</u>
Sample Date:_	2/27/2025		Analysis Date:	3/6/2025)
Was analysis co	ompleted within EPA M	lethod specified l	holding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blan	ks?		
☐ Yes	☑ No	□ N/A			
If yes, were t	nese compounds detec	cted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	plicated Relative	Percent Difference (RPD) for ap	plicable samples:
RPD = <u>′</u>	<u> 100% x (sample - dupli</u>	<u>cate)</u>			
	(sample + duplicate)/	2			
Is RPD within C	ΩAPP specified limits (≤	50% soil, ≤30% C	GW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sampl	le not duplicated)		
Were laborator	ry surrogate recovery c	oncentrations acc	ceptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	y matrix spike, laborat	ory control samp	les, and their respect	ive duplica	tes acceptable?
☑ Yes	□ No	□ N/A			
If no, explain	:				
Are detection l	imits at or below the li	mits specified in I	Form K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
Are laboratory	detection limits below	the applicable st	andards referenced	in the QAP	P?
☐ Yes	□ No	☑ N/A			
If no, explain	:				

Site Name:	Old White Meeting H	ouse	_Sample Identificati	on: <u>SB25-0</u> 2	2 (0-3")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u>c. </u> EPA Analytical Met	thod:	5020B
Were any abno	rmalities presented wit	thin Lab cover let	ter? 🗆 Yes	☑ No)
If yes, explair	n:				
Sample Matrix:	Soil		Extraction Date (if	applicable)	: <u>N/A</u>
Sample Date:_	2/27/2025		Analysis Date:	3/6/2025)
Was analysis co	mpleted within EPA M	lethod specified l	holding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blan	ks?		
☐ Yes	☑ No	□ N/A			
If yes, were t	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	plicated Relative	Percent Difference (RPD) for ap	plicable samples:
RPD = <u>′</u>	<u> 100% x (sample - dupli</u>	<u>cate)</u>			
	(sample + duplicate)/	2			
Is RPD within C	ΩAPP specified limits (≤	50% soil, ≤30% C	GW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sampl	e not duplicated)		
Were laborator	y surrogate recovery c	oncentrations acc	ceptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	y matrix spike, laborat	ory control samp	les, and their respect	ive duplica	tes acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the li	mits specified in I	Form K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
Are laboratory	detection limits below	the applicable st	andards referenced i	n the QAP	P?
☐ Yes	□ No	☑ N/A			
If no, explain	:				

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-02 (12-18")</u>
Job Number:	510210643		<u> </u>	
Sampler:	CC		_QA / QC Complete	ed By:LA
Analytical Labo	oratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u></u> EPA Analytical Me	thod: <u>6020B</u>
Were any abno	rmalities presented wit	hin Lab cover let	ter? □ Yes	☑ No
If yes, explair	n:			
Sample Matrix:	Soil		_Extraction Date (if	applicable): <u>N/A</u>
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025
Was analysis co	ompleted within EPA M	ethod specified l	nolding time?	
✓ Yes	□ No	□ N/A		
Any compound	ls detected in field, trip	or method blanl	<s?< td=""><td></td></s?<>	
☐ Yes	☑ No	□ N/A		
If yes, were tl	hese compounds detec	ted in any of the	samples analyzed?	
☐ Yes	□ No	☑ N/A		
Was this sampl	e properly labeled?			
✓ Yes	□ No	□ N/A		
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference ((RPD) for applicable samples:
RPD = <u>'</u>	100% x (sample - duplic	:ate)		
	(sample + duplicate)/2	2		
Is RPD within C	ΩAPP specified limits (≤	50% soil, ≤30% C	6W, <u><30</u> % soil vapor)?
☐ Yes	□ No	☑ N/A (sampl	e not duplicated)	
Were laborator	ry surrogate recovery co	oncentrations acc	ceptable?	
☐ Yes	□ No	☑ N/A		
Were laborator	ry matrix spike, laborato	ory control sampl	es, and their respec	tive duplicates acceptable?
✓ Yes	□ No	□ N/A		
If no, explain	:			
Are detection I	imits at or below the lir	nits specified in I	Form K of the QAPP	?
☐ Yes	□ No	☑ N/A		
Are laboratory	detection limits below	the applicable st	andards referenced	in the QAPP?
☐ Yes	□ No	☑ N/A		
If no, explain	•			

Site Name:	Old White Meeting H	ouse	Sample Identificati	on: <u>SB25-0</u>	3 (0-3")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	oratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u>c. </u> EPA Analytical Me [.]	thod:	5020B
Were any abno	rmalities presented wit	thin Lab cover let	ter? 🗆 Yes	☑No)
If yes, explair	ո:				
Sample Matrix:	Soil		Extraction Date (if	applicable)	: <u>N/A</u>
Sample Date:_	2/27/2025		Analysis Date:	3/6/2025)
Was analysis co	ompleted within EPA M	lethod specified l	holding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blan	ks?		
☐ Yes	☑ No	□ N/A			
If yes, were t	hese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	plicated Relative	Percent Difference (RPD) for ap	plicable samples:
RPD = <u>′</u>	<u> 100% x (sample - dupli</u>	<u>cate)</u>			
	(sample + duplicate)/	2			
Is RPD within C	ΩAPP specified limits (≤	50% soil, ≤30% C	GW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sampl	le not duplicated)		
Were laborator	ry surrogate recovery c	oncentrations acc	ceptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	ry matrix spike, laborato	ory control samp	les, and their respect	ive duplica	tes acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the li	mits specified in I	Form K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
Are laboratory	detection limits below	the applicable st	andards referenced	in the QAP	P?
☐ Yes	□ No	☑ N/A			
If no, explain	:				

Site Name:	Old White Meeting H	ouse	_Sample Identificati	on: <u>SB25-0.</u>	3 (12-18")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/East</u> e	ern Analytical, Inc	<u>c. </u> EPA Analytical Met	:hod: <i>(</i>	5020B
Were any abno	rmalities presented wi	thin Lab cover let	ter? 🗆 Yes	☑ No)
If yes, explair	n:				
Sample Matrix:	Soil		Extraction Date (if	applicable)	: <u>N/A</u>
Sample Date:_	2/27/2025		Analysis Date:	3/6/2025)
Was analysis co	mpleted within EPA M	lethod specified l	holding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blan	ks?		
☐ Yes	☑ No	□ N/A			
If yes, were t	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	plicated Relative	Percent Difference (RPD) for ap	plicable samples:
RPD = <u>′</u>	<u> 100% x (sample - dupli</u>	<u>cate)</u>			
	(sample + duplicate)/	2			
Is RPD within C	ΩAPP specified limits (≤	50% soil, ≤30% C	GW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sampl	e not duplicated)		
Were laborator	y surrogate recovery c	oncentrations acc	ceptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	y matrix spike, laborat	ory control samp	les, and their respect	ive duplica	tes acceptable?
☑ Yes	□ No	□ N/A			
If no, explain	:				
Are detection l	imits at or below the li	mits specified in I	Form K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
Are laboratory	detection limits below	the applicable st	andards referenced i	n the QAP	P?
☐ Yes	□ No	☑ N/A			
If no, explain	:				

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-04</u>	<u>(0-3")</u>
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	rn Analytical, Inc	<u>.</u> EPA Analytical Me	thod: <u>6</u> ()20B
Were any abno	rmalities presented with	nin Lab cover lett	ter? 🗆 Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Soil		_Extraction Date (if	applicable):	N/A
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025	_
Was analysis co	ompleted within EPA Me	ethod specified h	olding time?		
☑ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	s?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detect	ed in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	licated Relative I	Percent Difference (RPD) for app	olicable samples:
$RPD = \underline{1}$	100% x (sample - duplica	ate)			
	(sample + duplicate)/2				
Is RPD within C	ΣAPP specified limits (≤5	50% soil, ≤30% G	W, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
	ry surrogate recovery co	ncentrations acc	eptable?		
☐ Yes		☑ N/A			
	ry matrix spike, laborato	•	es, and their respec	tive duplicate	es acceptable?
☑ Yes		□ N/A			
If no, explain					
	imits at or below the lim	•	form K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
-	detection limits below t		andards referenced	in the QAPP	?
☐ Yes	□ No	☑ N/A			
If no, explain	:				

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-04 (12-18")</u>
Job Number:	510210643		_	
Sampler:	CC		_QA / QC Complete	ed By:LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	rn Analytical, Inc	<u>.</u> EPA Analytical Me	thod: <u>6020B</u>
Were any abno	rmalities presented wit	hin Lab cover let	ter? □ Yes	☑ No
If yes, explair	n:			
Sample Matrix:	Soil		_Extraction Date (if	applicable): <u>N/A</u>
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025
Was analysis co	mpleted within EPA M	ethod specified h	nolding time?	
☑ Yes	□ No	□ N/A		
Any compound	ls detected in field, trip	or method blank	cs?	
☐ Yes	☑ No	□ N/A		
If yes, were th	nese compounds detec	ted in any of the	samples analyzed?	
☐ Yes	□ No	☑ N/A		
Was this sampl	e properly labeled?			
☑ Yes	□ No	□ N/A		
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for applicable samples:
RPD = 1	100% x (sample - duplic	ate)		
	(sample + duplicate)/2	2		
Is RPD within C	APP specified limits (≤	50% soil, ≤30% G	iW, <u><30</u> % soil vapor)?
☐ Yes	□ No	☑ N/A (sample	e not duplicated)	
Were laborator	y surrogate recovery co	oncentrations acc	eptable?	
☐ Yes	□ No	☑ N/A		
Were laborator	y matrix spike, laborato	ory control sample	es, and their respect	tive duplicates acceptable?
☑ Yes	□ No	□ N/A		
If no, explain	:			
Are detection I	imits at or below the lin	nits specified in F	orm K of the QAPP	?
☐ Yes	□ No	☑ N/A		
Are laboratory	detection limits below	the applicable sta	andards referenced	in the QAPP?
☐ Yes	□ No	☑ N/A		
If no, explain	:			

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-05</u>	(0-3")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u></u> EPA Analytical Me	thod: <u>6</u>	020B
Were any abno	rmalities presented wit	hin Lab cover let	ter? 🗆 Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Soil		_Extraction Date (if	applicable):	N/A
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025	
Was analysis co	ompleted within EPA M	ethod specified l	nolding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	<s?< td=""><td></td><td></td></s?<>		
☐ Yes	☑ No	□ N/A			
If yes, were t	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for app	olicable samples:
RPD = 1	<u> 100% x (sample - duplic</u>	:ate)			
	(sample + duplicate)/2	2			
Is RPD within C	APP specified limits (≤	50% soil, ≤30% G	GW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sampl	e not duplicated)		
Were laborator	y surrogate recovery co	oncentrations acc	ceptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	y matrix spike, laborato	ory control sampl	es, and their respec	tive duplicat	es acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the lir	nits specified in F	Form K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
Are laboratory	detection limits below	the applicable st	andards referenced	in the QAPP	?
☐ Yes	□ No	☑ N/A			
If no, explain	:				

Site Name:	Old White Meeting H	ouse	Sample Identificati	on: <u>SB25-0</u>	5 (12-18")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/East</u> e	ern Analytical, Inc	c. EPA Analytical Met	:hod:	6020B
Were any abno	rmalities presented wi	thin Lab cover let	ter? 🗆 Yes	☑ No)
If yes, explair	n:				
Sample Matrix:	Soil		Extraction Date (if	applicable)	: <u>N/A</u>
Sample Date:_	2/27/2025		Analysis Date:	3/6/2025	5
Was analysis co	ompleted within EPA M	lethod specified l	holding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blan	ks?		
☐ Yes	☑ No	□ N/A			
If yes, were t	nese compounds detec	cted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	plicated Relative	Percent Difference (RPD) for ap	plicable samples:
RPD = <u>′</u>	<u> 100% x (sample - dupli</u>	<u>cate)</u>			
	(sample + duplicate)/	2			
Is RPD within C	ΩAPP specified limits (≤	50% soil, ≤30% C	GW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sampl	le not duplicated)		
Were laborator	ry surrogate recovery c	oncentrations acc	ceptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	y matrix spike, laborat	ory control samp	les, and their respect	ive duplica	tes acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the li	mits specified in I	Form K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
Are laboratory	detection limits below	the applicable st	andards referenced i	n the QAP	P?
☐ Yes	□ No	☑ N/A			
If no, explain	:				

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-06 (0-3")</u>	
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By: <u>LA</u>	
Analytical Labo	ratory: <u>Eurofins/Easte</u>	<u>rn Analytical, Inc</u>	<u>.</u> EPA Analytical Me	thod: <u>6020B</u>	
Were any abno	rmalities presented wit	hin Lab cover lett	ter? □ Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Soil		_Extraction Date (if	applicable): <u>N/A</u>	
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025	
Was analysis co	mpleted within EPA Mo	ethod specified h	nolding time?		
☑ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	cs?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for applicable sa	mples:
RPD = <u>′</u>	<u> 100% x (sample - duplic</u>	<u>ate)</u>			
	(sample + duplicate)/2				
Is RPD within C	APP specified limits (<	50% soil, ≤30% G	iW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
Were laborator	y surrogate recovery co	ncentrations acc	eptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	y matrix spike, laborato	ory control sample	es, and their respect	ive duplicates accepta	able?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the lin	nits specified in F	orm K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
Are laboratory	detection limits below t	the applicable sta	andards referenced	in the QAPP?	
☐ Yes	□ No	☑ N/A			
If no, explain	:				

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-06 (</u>	12-18")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	oratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u></u> EPA Analytical Me	thod: <u>60</u>	20B
Were any abno	rmalities presented wit	hin Lab cover let	ter? □ Yes	☑ No	
If yes, explair	n:				
Sample Matrix	Soil		_Extraction Date (if	applicable): _	N/A
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025	
Was analysis co	ompleted within EPA M	ethod specified l	nolding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blanl	<s?< td=""><td></td><td></td></s?<>		
☐ Yes	☑ No	□ N/A			
If yes, were t	hese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for appl	icable samples:
RPD = 1	100% x (sample - duplic	:ate)			
	(sample + duplicate)/2	2			
Is RPD within C	APP specified limits (≤	50% soil, ≤30% C	SW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sampl	e not duplicated)		
Were laborator	ry surrogate recovery co	oncentrations acc	ceptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	ry matrix spike, laborato	ory control sampl	es, and their respec	tive duplicate	s acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the lir	nits specified in I	Form K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
Are laboratory	detection limits below	the applicable st	andards referenced	in the QAPP?	i.
☐ Yes	□ No	☑ N/A			
If no, explain	•				

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-07 (0-3")</u>
Job Number:	510210643		_	
Sampler:	CC		_QA / QC Complete	ed By:LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	<u>rn Analytical, Inc</u>	<u>.</u> EPA Analytical Me	thod: <u>6020B</u>
Were any abno	rmalities presented witl	hin Lab cover lett	ter? □ Yes	☑ No
If yes, explair	n:			
Sample Matrix:	Soil		_Extraction Date (if	applicable): <u>N/A</u>
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025
Was analysis co	ompleted within EPA Me	ethod specified h	nolding time?	
✓ Yes	□ No	□ N/A		
Any compound	ls detected in field, trip	or method blank	cs?	
☐ Yes	☑ No	□ N/A		
If yes, were th	nese compounds detect	ted in any of the	samples analyzed?	
☐ Yes	□ No	☑ N/A		
Was this sampl	e properly labeled?			
✓ Yes	□ No	□ N/A		
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for applicable samples:
RPD = <u>′</u>	<u> 100% x (sample - duplic</u>	<u>ate)</u>		
	(sample + duplicate)/2			
Is RPD within C	APP specified limits (<5	50% soil, ≤30% G	iW, <u><30</u> % soil vapor)?
☐ Yes	□ No	☑ N/A (sample	e not duplicated)	
Were laborator	y surrogate recovery co	ncentrations acc	eptable?	
☐ Yes	□ No	☑ N/A		
Were laborator	y matrix spike, laborato	ory control sample	es, and their respect	tive duplicates acceptable?
✓ Yes	□ No	□ N/A		
If no, explain	:			
Are detection I	imits at or below the lin	nits specified in F	orm K of the QAPP	?
□ Yes	□ No	☑ N/A		
Are laboratory	detection limits below t	the applicable sta	andards referenced	in the QAPP?
☐ Yes	□ No	☑ N/A		
If no, explain	:			

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-07 (12-18")</u>
Job Number:	510210643		_	
Sampler:	CC		_QA / QC Complet	ed By:LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u>.</u> EPA Analytical Me	thod: <u>6020B</u>
Were any abno	rmalities presented wit	hin Lab cover let	ter? □ Yes	☑ No
If yes, explair	n:			
Sample Matrix:	Soil		_Extraction Date (if	applicable): <u>N/A</u>
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025
Was analysis co	ompleted within EPA M	ethod specified h	nolding time?	
☑ Yes	□ No	□ N/A		
Any compound	ls detected in field, trip	or method blank	cs?	
☐ Yes	☑ No	□ N/A		
If yes, were th	nese compounds detec	ted in any of the	samples analyzed?	
☐ Yes	□ No	☑ N/A		
Was this sampl	e properly labeled?			
✓ Yes	□ No	□ N/A		
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for applicable samples:
RPD = <u>′</u>	<u> 100% x (sample - duplic</u>	:ate)		
	(sample + duplicate)/2	2		
Is RPD within C	ΩAPP specified limits (≤	50% soil, ≤30% G	iW, <u><30</u> % soil vapor)?
☐ Yes	□ No	☑ N/A (sample	e not duplicated)	
Were laborator	ry surrogate recovery co	oncentrations acc	eptable?	
☐ Yes	□ No	☑ N/A		
Were laborator	y matrix spike, laborato	ory control sample	es, and their respec	tive duplicates acceptable?
☑ Yes	□ No	□ N/A		
If no, explain	:			
Are detection I	imits at or below the lir	nits specified in F	orm K of the QAPP	?
☐ Yes	□ No	☑ N/A		
Are laboratory	detection limits below	the applicable sta	andards referenced	in the QAPP?
☐ Yes	□ No	☑ N/A		
If no, explain	:			

Site Name:	Old White Meeting H	ouse	Sample Identificati	on: <u>SB25-0</u>	8 (0-3")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/East</u> e	ern Analytical, Inc	<u>c. </u> EPA Analytical Me [.]	thod:	5020B
Were any abno	rmalities presented wi	thin Lab cover let	ter? 🗆 Yes	☑No)
If yes, explair	n:				
Sample Matrix:	Soil		Extraction Date (if	applicable)	: <u>N/A</u>
Sample Date:_	2/27/2025		Analysis Date:	3/6/2025)
Was analysis co	mpleted within EPA M	lethod specified l	holding time?		
☑ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blan	ks?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	plicated Relative	Percent Difference (RPD) for ap	plicable samples:
RPD = <u>′</u>	100% x (sample - dupli	<u>cate)</u>			
	(sample + duplicate)/	2			
Is RPD within C	APP specified limits (≤	50% soil, ≤30% C	GW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sampl	le not duplicated)		
Were laborator	y surrogate recovery c	oncentrations acc	ceptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	y matrix spike, laborat	ory control samp	les, and their respect	ive duplica	tes acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the li	mits specified in I	Form K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
Are laboratory	detection limits below	the applicable st	andards referenced	in the QAP	P?
☐ Yes	□ No	☑ N/A			
If no, explain	:				

Site Name:	Old White Meeting Ho	ouse	Sample Identificat	ion: <u>SB25-(</u>	08 (12-18")
Job Number:	510210643		-		
Sampler:	CC		QA / QC Complet	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u> i	rn Analytical, Inc.	EPA Analytical Me	thod:	6020B
Were any abno	rmalities presented with	nin Lab cover lette	er? □ Yes	☑N	lo
If yes, explain	:				
Sample Matrix:	Soil		Extraction Date (if	applicable	:): <u>N/A</u>
Sample Date:_	2/27/2025		_Analysis Date:	3/6/202	.5
Was analysis co	mpleted within EPA Me	ethod specified h	olding time?		
✓ Yes	□ No	□ N/A			
Any compound	s detected in field, trip	or method blanks	s?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detect	ed in any of the s	amples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sample	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	licated Relative P	ercent Difference	(RPD) for a	pplicable samples:
RPD = <u>1</u>	00% x (sample - duplica	ate)			
	(sample + duplicate)/2				
Is RPD within C	APP specified limits (≤5	50% soil, ≤30% G\	W, <u><30</u> % soil vapor	-)?	
☐ Yes	□ No	☑ N/A (sample	not duplicated)		
Were laborator	y surrogate recovery co	ncentrations acce	eptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	y matrix spike, laborato	ry control sample	s, and their respec	tive duplic	ates acceptable?
✓ Yes	□ No	□ N/A			
If no, explain:					
Are detection li	mits at or below the lim	nits specified in Fo	orm K of the QAPP	?	
☐ Yes	□ No	☑ N/A			
Are laboratory	detection limits below t	he applicable sta	ndards referenced	in the QAF	P?
☐ Yes	□ No	☑ N/A			
If no, explain:					

Soil: Metals – Arsenic and Lead by SPLP

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB24-01</u>	<u>R</u>
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	rn Analytical, Inc	<u>.</u> EPA Analytical Me [.]	thod: <u>60</u>	020B-SPLP
Were any abno	rmalities presented wit	hin Lab cover let	ter? 🗆 Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Aqueous		_Extraction Date (if	applicable):	N/A
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025	
Was analysis co	mpleted within EPA M	ethod specified h	nolding time?		
☑ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	xs?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for app	olicable samples:
RPD = 1	100% x (sample - duplic	ate)			
	(sample + duplicate)/2	2			
Is RPD within C	APP specified limits (≤	50% soil, ≤30% G	W, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
Were laborator	y surrogate recovery co	oncentrations acc	eptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	y matrix spike, laborato	ory control sample	es, and their respect	tive duplicate	es acceptable?
☑ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the lin	nits specified in F	orm K of the QAPP	?	
☑ Yes	□ No	□ N/A			
Are laboratory	detection limits below	the applicable sta	andards referenced	in the QAPP	?
✓ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB24-03</u> I	<u>R</u>
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	rn Analytical, Inc.	_EPA Analytical Me	thod: <u>6(</u>)20B-SPLP
Were any abno	rmalities presented with	nin Lab cover lett	er? 🗆 Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Aqueous		_Extraction Date (if	applicable):	N/A
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025	
Was analysis co	ompleted within EPA Me	ethod specified h	olding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	s?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detect	ed in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	licated Relative I	Percent Difference (RPD) for app	licable samples:
$RPD = \underline{1}$	100% x (sample - duplica	ate)			
	(sample + duplicate)/2				
Is RPD within C	ΣAPP specified limits (≤5	50% soil, ≤30% G	W, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
	ry surrogate recovery co	ncentrations acc	eptable?		
☐ Yes		☑ N/A			
Were laborator	ry matrix spike, laborato	ry control sample	es, and their respec	tive duplicate	es acceptable?
✓ Yes		□ N/A			
If no, explain					
	imits at or below the lim	•	orm K of the QAPP	?	
✓ Yes	□ No	□ N/A			
-	detection limits below t		indards referenced	in the QAPP	?
☑ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB24-04</u>	<u>R</u>
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u>.</u> EPA Analytical Me	thod: <u>60</u>	020B-SPLP
Were any abno	rmalities presented wit	hin Lab cover let	ter? □ Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Aqueous		_Extraction Date (if	applicable):	N/A
Sample Date:_	2/27/2025		_Analysis Date:	3/6/2025	
Was analysis co	ompleted within EPA M	ethod specified h	nolding time?		
☑ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	cs?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for app	olicable samples:
RPD = 1	100% x (sample - duplic	:ate)			
	(sample + duplicate)/2	2			
Is RPD within C	APP specified limits (≤	50% soil, ≤30% G	iW, <u><30</u> % soil vapor)?	
✓ Yes	□ No	□ N/A (sample	e not duplicated)		
Were laborator	ry surrogate recovery co	oncentrations acc	eptable?		
☐ Yes	□ No	☑ N/A			
Were laborator	y matrix spike, laborato	ory control sample	es, and their respect	tive duplicate	es acceptable?
☑ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the lin	nits specified in F	orm K of the QAPP	?	
☑ Yes	□ No	□ N/A			
Are laboratory	detection limits below	the applicable sta	andards referenced	in the QAPP	?
✓ Yes	□ No	□ N/A			
If no, explain	:				

Soil: PAHs

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-01 (0-3")</u>
Job Number:	510210643		_	
Sampler:	СС		_QA / QC Complete	ed By:LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	rn Analytical, Inc.	<u>.</u> EPA Analytical Me	thod: <u>8270E</u>
Were any abno	rmalities presented with	nin Lab cover lett	ter? 🗆 Yes	☑ No
If yes, explair	ı:			
Sample Matrix:	Solid		_Extraction Date (if	applicable):
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025
Was analysis co	mpleted within EPA Me	ethod specified h	olding time?	
☑ Yes	□ No	□ N/A		
Any compound	s detected in field, trip	or method blank	s?	
☐ Yes	☑ No	□ N/A		
If yes, were th	nese compounds detect	ed in any of the	samples analyzed?	
☐ Yes	□ No	☑ N/A		
Was this sampl	e properly labeled?			
☑ Yes	□ No	□ N/A		
Attach spreads	heet of sample and dup	licated Relative I	Percent Difference (RPD) for applicable samples:
RPD = <u>1</u>	00% x (sample - duplication	ate)		
	(sample + duplicate)/2			
Is RPD within C	APP specified limits (≤5	50% soil, ≤30% G	W, <u><30</u> % soil vapor)?
☐ Yes	□ No	☑ N/A (sample	e not duplicated)	
Were laborator	y surrogate recovery co	ncentrations acc	eptable?	
☑ Yes	□ No	□ N/A		
Were laborator	y matrix spike, laborato	ry control sample	es, and their respect	tive duplicates acceptable?
✓ Yes	□ No	□ N/A		
If no, explain				
Are detection I	imits at or below the lim	nits specified in F	orm K of the QAPP	?
☐ Yes	☑ No	□ N/A		
Are laboratory	detection limits below t	he applicable sta	andards referenced	in the QAPP?
	□ No	□ N/A		
If no, explain:				

Site Name:	Old White Meeting H	ouse	_Sample Identificati	on: <u>SB25-01 (1</u>	<u>2-18") </u>
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u>.</u> EPA Analytical Me [.]	thod: <u>827</u>	0E
Were any abno	rmalities presented wit	hin Lab cover let	ter? 🗆 Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Solid		_Extraction Date (if	applicable): _	
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	
Was analysis co	mpleted within EPA M	ethod specified h	nolding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	ss?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for applic	cable samples:
$RPD = \underline{1}$	100% x (sample - duplic	cate)			
	(sample + duplicate)/2	2			
Is RPD within C	ΩAPP specified limits (≤	50% soil, ≤30% G	W, <u><30</u> % soil vapor)?	
✓ Yes	□ No	□ N/A (sample	e not duplicated)		
Were laborator	y surrogate recovery co	oncentrations acc	eptable?		
✓ Yes	□ No	□ N/A			
Were laborator	y matrix spike, laborato	ory control sample	es, and their respect	tive duplicates	acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection l	imits at or below the lir	nits specified in F	orm K of the QAPP	?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits below	the applicable sta	andards referenced	in the QAPP?	
☑ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting H	louse	_Sample Identificat	ion: <u>SB25-02</u>	<u>2 (0-3")</u>
Job Number:	510210643		<u>_</u>		
Sampler:	CC		_QA / QC Complet	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/East</u>	<u>ern Analytical, Inc</u>	<u></u> EPA Analytical Me	thod:8	3270E
Were any abno	rmalities presented wi	thin Lab cover let	ter? □ Yes	☑No)
If yes, explair	n:				
Sample Matrix:	Solid		_Extraction Date (if	applicable)	:
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	<u>;</u>
Was analysis co	ompleted within EPA N	1ethod specified h	nolding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	o or method blank	ks?		
☐ Yes	☑ No	□ N/A			
If yes, were tl	nese compounds dete	cted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	plicated Relative	Percent Difference	(RPD) for ap	plicable samples:
RPD = <u>′</u>	<u> 100% x (sample - dupli</u>	<u>cate)</u>			
	(sample + duplicate)/	2			
Is RPD within C	APP specified limits (s	≤50% soil, ≤30% G	SW, <u><30</u> % soil vapoi	-)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
Were laborator	ry surrogate recovery o	concentrations acc	ceptable?		
✓ Yes	□ No	□ N/A			
Were laborator	y matrix spike, laborat	ory control sampl	es, and their respec	tive duplica	tes acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the li	mits specified in F	orm K of the QAPP	'?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits below	the applicable sta	andards referenced	in the QAPI	P?
✓ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting F	louse	_Sample Identificat	ion: <u>SB25-02</u>	<u>? (12-18")</u>
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complet	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/East</u>	ern Analytical, Inc	<u></u> EPA Analytical Me	thod:8	3270E
Were any abno	rmalities presented wi	thin Lab cover let	ter? □ Yes	☑ No	ı
If yes, explair	n:				
Sample Matrix:	Solid		_Extraction Date (if	applicable):	·
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	
Was analysis co	mpleted within EPA N	Nethod specified h	nolding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	o or method blank	ks?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds dete	cted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	plicated Relative	Percent Difference	(RPD) for ap	plicable samples:
RPD = <u>′</u>	<u> 100% x (sample - dupli</u>	<u>cate)</u>			
	(sample + duplicate)/	2			
Is RPD within C	APP specified limits (≤50% soil, ≤30% G	iW, <u><30</u> % soil vapoi	-)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
Were laborator	ry surrogate recovery o	concentrations acc	ceptable?		
✓ Yes	□ No	□ N/A			
Were laborator	y matrix spike, laborat	ory control sampl	es, and their respec	tive duplicat	tes acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the li	mits specified in F	orm K of the QAPP	?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits below	the applicable sta	andards referenced	in the QAPF	>?
✓ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-03</u>	(0-3")
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u>.</u> EPA Analytical Me [.]	thod: <u>82</u>	?70E
Were any abno	rmalities presented wit	hin Lab cover let	ter? 🗆 Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Solid		_Extraction Date (if	applicable):	
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	_
Was analysis co	mpleted within EPA M	ethod specified h	nolding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	ss?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for app	licable samples:
RPD = 1	100% x (sample - duplic	ate)			
	(sample + duplicate)/2	2			
Is RPD within C	APP specified limits (<	50% soil, ≤30% G	W, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
Were laborator	ry surrogate recovery co	oncentrations acc	eptable?		
✓ Yes	□ No	□ N/A			
Were laborator	y matrix spike, laborato	ory control sample	es, and their respect	tive duplicate	es acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection l	imits at or below the lir	nits specified in F	orm K of the QAPP	?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits below	the applicable sta	andards referenced	in the QAPP	?
☑ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting H	ouse	_Sample Identificati	on: <u>SB25-03 (</u>	12-18")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	oratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u></u> EPA Analytical Met	thod: <u>82</u>	70E
Were any abno	ormalities presented wit	thin Lab cover let	ter? 🗆 Yes	☑ No	
If yes, explair	ո:				
Sample Matrix:	Solid		_Extraction Date (if	applicable): _	
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	
Was analysis co	ompleted within EPA M	lethod specified l	nolding time?		
☑ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	<s?< td=""><td></td><td></td></s?<>		
☐ Yes	☑ No	□ N/A			
If yes, were tl	hese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	plicated Relative	Percent Difference (RPD) for appl	icable samples:
RPD =	100% x (sample - duplic	cate)			
	(sample + duplicate)/2	2			
Is RPD within C	ΩAPP specified limits (≤	50% soil, ≤30% G	GW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sampl	e not duplicated)		
Were laborator	ry surrogate recovery c	oncentrations acc	ceptable?		
✓ Yes	□ No	□ N/A			
Were laborator	ry matrix spike, laborato	ory control sampl	es, and their respect	ive duplicate	s acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the lir	mits specified in F	Form K of the QAPP	?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits below	the applicable st	andards referenced i	n the QAPP?	
✓ Yes	□ No	□ N/A			
If no, explain	•				

Site Name:	Old White Meeting I	<u> louse</u>	Sample Identificat	ion: <u>SB25-04</u>	! (0-3")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complet	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Eas</u>	tern Analytical, Ind	<u>c. </u> EPA Analytical Me	thod:8	3270E
Were any abno	rmalities presented w	ithin Lab cover let	ter? □ Yes	☑ No)
If yes, explair	n:				
Sample Matrix:	Solid		Extraction Date (if	applicable):	·
Sample Date:_	2/27/2025		Analysis Date:	3/4/2025	1
Was analysis co	ompleted within EPA N	Method specified	holding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, tri	p or method blan	ks?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds dete	cted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and d	uplicated Relative	Percent Difference	(RPD) for ap	plicable samples:
RPD = <u>′</u>	<u> 100% x (sample - dupl</u>	<u>icate)</u>			
	(sample + duplicate).	/2			
Is RPD within C	ΔAPP specified limits (≤50% soil, ≤30% (GW, <u><30</u> % soil vapoi	-)?	
☐ Yes	□ No	☑ N/A (samp	le not duplicated)		
Were laborator	y surrogate recovery	concentrations ac	ceptable?		
✓ Yes	□ No	□ N/A			
Were laborator	y matrix spike, labora	tory control samp	les, and their respec	tive duplicat	tes acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the l	imits specified in I	Form K of the QAPP	?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits belov	v the applicable st	andards referenced	in the QAPF	>?
✓ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-0</u> 4	<u>1 (12-18")</u>
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u> i	<u>rn Analytical, Inc.</u>	_EPA Analytical Met	:hod: <u>8</u>	3270E
Were any abno	rmalities presented with	nin Lab cover lett	er? □ Yes	☑ No	,
If yes, explair	ı:				
Sample Matrix:	Solid		_Extraction Date (if	applicable):	; <u> </u>
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	1
Was analysis co	mpleted within EPA Me	ethod specified h	olding time?		
✓ Yes	□ No	□ N/A			
Any compound	s detected in field, trip	or method blank	s?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detect	ed in any of the s	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	licated Relative F	Percent Difference (RPD) for ap	plicable samples:
RPD = 1	00% x (sample - duplica	ate)			
	(sample + duplicate)/2				
Is RPD within C	APP specified limits (≤5	50% soil, ≤30% G'	W, <u><30</u> % soil vapor))?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
Were laborator	y surrogate recovery co	ncentrations acco	eptable?		
	□ No	□ N/A			
Were laborator	y matrix spike, laborato	ry control sample	es, and their respect	ive duplicat	tes acceptable?
☑ Yes	□ No	□ N/A			
If no, explain:					
Are detection I	imits at or below the lim	nits specified in F	orm K of the QAPP	?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits below t	he applicable sta	ndards referenced i	n the QAPF	>?
✓ Yes	□ No	□ N/A			
If no, explain:					

Site Name:	Old White Meeting	<u> Touse</u>	Sample Identificat	.ion: <u>SB25-0</u> :	<u>o (0-3")</u>
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complet	ted By:	LA
Analytical Labo	ratory: <u>Eurofins/Eas</u>	tern Analytical, Ind	<u>c. </u> EPA Analytical Me	ethod:8	3270E
Were any abno	rmalities presented w	ithin Lab cover let	tter? 🗆 Yes	☑ No)
If yes, explair	n:				
Sample Matrix:	Solid		Extraction Date (if	applicable)	:
Sample Date:_	2/27/2025		Analysis Date:	3/4/2025)
Was analysis co	ompleted within EPA I	Method specified	holding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, tr	p or method blan	ks?		
☐ Yes	☑ No	□ N/A			
If yes, were tl	nese compounds dete	ected in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and d	uplicated Relative	Percent Difference	(RPD) for ap	plicable samples:
RPD = <u>′</u>	100% x (sample - dup	<u>icate)</u>			
	(sample + duplicate)	/2			
Is RPD within C	ΩAPP specified limits (≤50% soil, ≤30% (GW, <u><30</u> % soil vapo	r)?	
☐ Yes	□ No	☑ N/A (samp	le not duplicated)		
Were laborator	y surrogate recovery	concentrations ac	ceptable?		
✓ Yes	□ No	□ N/A			
Were laborator	ry matrix spike, labora	tory control samp	les, and their respec	tive duplica:	tes acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the	imits specified in	Form K of the QAPF	??	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits belov	v the applicable st	andards referenced	in the QAP	P?
✓ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting H	ouse	_Sample Identificati	on: <u>SB25-05 (1</u>	2-18")
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u>.</u> EPA Analytical Me	thod: <u>827</u>	'0E
Were any abno	rmalities presented wit	hin Lab cover let	ter? □ Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Solid		_Extraction Date (if	applicable): _	
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	
Was analysis co	mpleted within EPA M	ethod specified h	nolding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	cs?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for appli	cable samples:
$RPD = \underline{1}$	100% x (sample - duplic	<u>:ate)</u>			
	(sample + duplicate)/2	2			
Is RPD within C	ΩAPP specified limits (≤	50% soil, ≤30% G	iW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
Were laborator	ry surrogate recovery co	oncentrations acc	eptable?		
✓ Yes	□ No	□ N/A			
Were laborator	y matrix spike, laborato	ory control sample	es, and their respect	tive duplicates	acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection l	imits at or below the lir	nits specified in F	orm K of the QAPP	?	
☑ Yes	□ No	□ N/A			
Are laboratory	detection limits below	the applicable sta	andards referenced	in the QAPP?	
☑ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting F	louse	_Sample Identificat	ion: <u>SB25-06</u>	<u>) (0-3")</u>
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complet	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/East</u>	<u>ern Analytical, Inc</u>	<u>.</u> EPA Analytical Me	thod:8	3270E
Were any abno	rmalities presented wi	thin Lab cover let	ter? □ Yes	☑ No	ı
If yes, explair	n:				
Sample Matrix:	Solid		_Extraction Date (if	applicable):	·
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	
Was analysis co	ompleted within EPA N	Nethod specified h	nolding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	o or method blank	<s?< td=""><td></td><td></td></s?<>		
☐ Yes	☑ No	□ N/A			
If yes, were tl	nese compounds dete	cted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	ıplicated Relative	Percent Difference	(RPD) for ap	plicable samples:
RPD = <u>′</u>	<u> 100% x (sample - dupli</u>	<u>cate)</u>			
	(sample + duplicate)/	2			
Is RPD within C	ΩAPP specified limits (s	≤50% soil, ≤30% G	iW, <u><30</u> % soil vapoi	-)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
Were laborator	ry surrogate recovery o	concentrations acc	eptable?		
✓ Yes	□ No	□ N/A			
Were laborator	ry matrix spike, laborat	ory control sampl	es, and their respec	tive duplicat	tes acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the li	mits specified in F	orm K of the QAPP	'?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits below	the applicable sta	andards referenced	in the QAPF	>?
✓ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting H	ouse	_Sample Identificati	on: <u>SB25-06 </u>	(12-18")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	oratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u></u> EPA Analytical Met	thod: <u>82</u>	:70E
Were any abno	ormalities presented wit	thin Lab cover let	ter? 🗆 Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Solid		_Extraction Date (if	applicable):	
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	
Was analysis co	ompleted within EPA M	ethod specified l	nolding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	<s?< td=""><td></td><td></td></s?<>		
☐ Yes	☑ No	□ N/A			
If yes, were tl	hese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	plicated Relative	Percent Difference (RPD) for app	licable samples:
RPD = <u>'</u>	100% x (sample - duplic	cate)			
	(sample + duplicate)/2	2			
Is RPD within C	ΩAPP specified limits (≤	50% soil, ≤30% G	GW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sampl	e not duplicated)		
Were laborator	ry surrogate recovery c	oncentrations acc	ceptable?		
✓ Yes	□ No	□ N/A			
Were laborator	ry matrix spike, laborato	ory control sampl	es, and their respect	ive duplicate	s acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the lir	mits specified in F	Form K of the QAPP	?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits below	the applicable st	andards referenced i	in the QAPP?)
✓ Yes	□ No	□ N/A			
If no, explain	•				

Site Name:	Old White Meeting Ho	ouse	_Sample Identificati	on: <u>SB25-07</u>	(0-3")
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u>	ern Analytical, Inc	<u>.</u> EPA Analytical Me [.]	thod: <u>82</u>	:70E
Were any abno	rmalities presented wit	hin Lab cover let	ter? □ Yes	☑ No	
If yes, explair	n:				
Sample Matrix:	Solid		_Extraction Date (if	applicable):	
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	
Was analysis co	mpleted within EPA M	ethod specified h	nolding time?		
✓ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	cs?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detec	ted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	olicated Relative	Percent Difference (RPD) for app	licable samples:
$RPD = \underline{1}$	<u> 100% x (sample - duplic</u>	ate)			
	(sample + duplicate)/2	2			
Is RPD within C	APP specified limits (≤	50% soil, ≤30% G	iW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
Were laborator	y surrogate recovery co	oncentrations acc	eptable?		
✓ Yes	□ No	□ N/A			
Were laborator	y matrix spike, laborato	ory control sample	es, and their respect	tive duplicate	s acceptable?
✓ Yes	□ No	□ N/A			
If no, explain	:				
Are detection l	imits at or below the lin	nits specified in F	orm K of the QAPP	?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits below	the applicable sta	andards referenced	in the QAPP?	•
☑ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting House		Sample Identification: <u>SB25-07 (12-18")</u>		
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easte</u> i	<u>rn Analytical, Inc.</u>	_EPA Analytical Met	:hod:8	3270E
Were any abno	rmalities presented with	nin Lab cover lett	er? □ Yes	☑ No)
If yes, explair	ı:				
Sample Matrix:	Solid		_Extraction Date (if	applicable):	:
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	
Was analysis co	mpleted within EPA Me	ethod specified h	olding time?		
✓ Yes	□ No	□ N/A			
Any compound	s detected in field, trip	or method blank	s?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detect	ed in any of the s	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
✓ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	licated Relative F	Percent Difference (RPD) for ap	plicable samples:
RPD = <u>1</u>	00% x (sample - duplica	ate)			
	(sample + duplicate)/2				
Is RPD within C	APP specified limits (≤5	50% soil, ≤30% G	W, <u><30</u> % soil vapor))?	
☐ Yes	□ No	☑ N/A (sample	not duplicated)		
Were laborator	y surrogate recovery co	ncentrations acce	eptable?		
☑ Yes	□ No	□ N/A			
Were laborator	y matrix spike, laborato	ry control sample	es, and their respect	ive duplica	tes acceptable?
☑ Yes	□ No	□ N/A			
If no, explain					
Are detection I	imits at or below the lim	its specified in F	orm K of the QAPP	?	
□ Yes	☑ No	□ N/A			
Are laboratory	detection limits below t	he applicable sta	ndards referenced i	n the QAPI	>?
✓ Yes	□ No	□ N/A			
If no, explain:					

Site Name:	Old White Meeting H	ouse	_Sample Identificati	on: <u>SB25-08</u>	3 (0-3")
Job Number:	510210643		<u> </u>		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/East</u>	<u>ern Analytical, Inc</u>	<u></u> EPA Analytical Met	thod:8	3270E
Were any abno	rmalities presented wi	thin Lab cover let	ter? 🗆 Yes	☑ No)
If yes, explair	n:				
Sample Matrix:	Solid		_Extraction Date (if	applicable):	:
Sample Date:_	2/27/2025		Analysis Date:	3/4/2025	1
Was analysis co	mpleted within EPA M	lethod specified l	holding time?		
☑ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	o or method blank	ks?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detec	cted in any of the	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and du	plicated Relative	Percent Difference (RPD) for ap	plicable samples:
RPD = <u>′</u>	100% x (sample - dupli	<u>cate)</u>			
	(sample + duplicate)/	2			
Is RPD within C	ΩAPP specified limits (≤	≨50% soil, ≤30% C	GW, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sampl	e not duplicated)		
Were laborator	y surrogate recovery c	oncentrations acc	ceptable?		
☑ Yes	□ No	□ N/A			
Were laborator	y matrix spike, laborat	ory control sampl	les, and their respect	ive duplica	tes acceptable?
☑ Yes	□ No	□ N/A			
If no, explain	:				
Are detection I	imits at or below the li	mits specified in F	Form K of the QAPP	?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits below	the applicable st	andards referenced i	in the QAPI	>?
✓ Yes	□ No	□ N/A			
If no, explain	:				

Site Name:	Old White Meeting House		Sample Identification: <u>SB25-08 (12-18")</u>		
Job Number:	510210643		_		
Sampler:	CC		_QA / QC Complete	ed By:	LA
Analytical Labo	ratory: <u>Eurofins/Easter</u>	<u>rn Analytical, Inc.</u>	_EPA Analytical Met	:hod: <u>8</u>	270E
Were any abno	rmalities presented with	nin Lab cover lett	er? □ Yes	☑ No	
If yes, explair	1:				
Sample Matrix:	Solid		_Extraction Date (if	applicable):	
Sample Date:_	2/27/2025		_Analysis Date:	3/4/2025	
Was analysis co	ompleted within EPA Me	ethod specified h	olding time?		
☑ Yes	□ No	□ N/A			
Any compound	ls detected in field, trip	or method blank	s?		
☐ Yes	☑ No	□ N/A			
If yes, were th	nese compounds detect	ed in any of the s	samples analyzed?		
☐ Yes	□ No	☑ N/A			
Was this sampl	e properly labeled?				
☑ Yes	□ No	□ N/A			
Attach spreads	heet of sample and dup	licated Relative F	Percent Difference (RPD) for ap	plicable samples:
RPD = <u>1</u>	100% x (sample - duplica	ate)			
	(sample + duplicate)/2				
Is RPD within C	APP specified limits (≤5	50% soil, ≤30% G'	W, <u><30</u> % soil vapor)?	
☐ Yes	□ No	☑ N/A (sample	e not duplicated)		
Were laborator	y surrogate recovery co	ncentrations acce	eptable?		
☑ Yes	□ No	□ N/A			
Were laborator	y matrix spike, laborato	ry control sample	es, and their respect	ive duplicat	es acceptable?
☑ Yes	□ No	□ N/A			
If no, explain:	;				
Are detection I	imits at or below the lim	nits specified in F	orm K of the QAPP	?	
☐ Yes	☑ No	□ N/A			
Are laboratory	detection limits below t	he applicable sta	ndards referenced i	n the QAPF	??
✓ Yes	□ No	□ N/A			
If no, explain:	:				

Appendix B

RPD Calculators

RPD Calculator: Soil

	CDOE 04 (40 40)	ъ .	
	SB25-01 (12-18')	Duplicate	
	2/27/2025	2/27/2025	RPD
PARAMETER	8270E	8270E	
1-Methylnaphthalene	ND<0.0085	ND<0.0086	-
2-Methylnaphthalene	ND<0.0085	ND<0.0086	-
Acenaphthene	ND<0.0085	ND<0.0086	-
Acenaphthylene	ND<0.0085	ND<0.0086	-
Anthracene	ND<0.0085	ND<0.0086	-
Benzo[a]anthracene	0.018	0.020	-10.5
Benzo[a]pyrene	0.019	0.020	-5.1
Benzo[b]fluoranthene	0.028	0.035	-22.2
Benzo[k]fluoranthene	0.0097	ND<0.0086	-
Benzo[g,h,i]perylene	0.016	0.012	28.6
Chrysene	0.021	0.025	-17.4
Dibenz[a,h]anthracene	ND<0.0085	ND<0.0086	-
Fluorene	ND<0.0085	ND<0.0086	-
Fluoranthene	0.031	0.038	-20.3
ldeno[1,2,3-cd]pyrene	0.015	ND<0.0086	-
Naphthalene	ND<0.0085	ND<0.0086	-
Phenanthrene	0.0097	0.012	-21.2
Pyrene	0.028	0.033	-16.4

	SB24-04R	Duplicate	
	2/27/2025	2/27/2025	RPD
PARAMETER	6020B - SPLP	6020B - SPLP	
Arsenic	ND<0.010	ND<0.010	-
Lead	0.43	0.47	-8.9

All units in mg/Kg Exceeds RPD of \leq 50% for soil